Do you want to publish a course? Click here

Limiting Value of the Kolkata Index for Social Inequality and a Possible Social Constant

79   0   0.0 ( 0 )
 Added by Asim Ghosh Mr
 Publication date 2021
  fields Physics Economy
and research's language is English




Ask ChatGPT about the research

Based on some analytic structural properties of the Gini and Kolkata indices for social inequality, as obtained from a generic form of the Lorenz function, we make a conjecture that the limiting (effective saturation) value of the above-mentioned indices is about 0.865. This, together with some more new observations on the citation statistics of individual authors (including Nobel laureates), suggests that about $14%$ of people or papers or social conflicts tend to earn or attract or cause about $86%$ of wealth or citations or deaths respectively in very competitive situations in markets, universities or wars. This is a modified form of the (more than a) century old $80-20$ law of Pareto in economy (not visible today because of various welfare and other strategies) and gives an universal value ($0.86$) of social (inequality) constant or number.



rate research

Read More

Using a lifecycle framework with Epstein-Zin (1989) utility and a mixed-integer optimization approach, we compute the optimal age to claim Social Security benefits. Taking advantage of homogeneity, a sufficient statistic is the ratio of wealth to the primary insurance amount (PIA). If the investors wealth to PIA ratio exceeds a certain threshold, individuals should defer Social Security for at least a year. The optimal threshold depends on mortality assumptions and an individuals utility preferences, but is less sensitive to capital market assumptions. The threshold wealth to PIA ratio increases from 5.5 for men and 5.2 for women at age 62 to 11.1 for men and 10.4 for women at age 69. Below the threshold wealth to PIA ratio, individuals claim Social Security to raise consumption. Above this level, investors can afford to fund consumption out of wealth for at least one year, and then claim a higher benefit.
70 - Geoff Boeing 2020
This morphological study identifies and measures recent nationwide trends in American street network design. Historically, orthogonal street grids provided the interconnectivity and density that researchers identify as important factors for reducing vehicular travel and emissions and increasing road safety and physical activity. During the 20th century, griddedness declined in planning practice alongside declines in urban form compactness, density, and connectivity as urbanization sprawled around automobile dependence. But less is known about comprehensive empirical trends across US neighborhoods, especially in recent years. This study uses public and open data to examine tract-level street networks across the entire US. It develops theoretical and measurement frameworks for a quality of street networks defined here as griddedness. It measures how griddedness, orientation order, straightness, 4-way intersections, and intersection density declined from 1940 through the 1990s while dead-ends and block lengths increased. However, since 2000, these trends have rebounded, shifting back toward historical design patterns. Yet, despite this rebound, when controlling for topography and built environment factors all decades post-1939 are associated with lower griddedness than pre-1940. Higher griddedness is associated with less car ownership - which itself has a well-established relationship with vehicle kilometers traveled and greenhouse gas emissions - while controlling for density, home and household size, income, jobs proximity, street network grain, and local topography. Interconnected grid-like street networks offer practitioners an important tool for curbing car dependence and emissions. Once established, street patterns determine urban spatial structure for centuries, so proactive planning is essential.
82 - Ruiqi Li , Lingyun Lu , Weiwei Gu 2020
Cities are centers for the integration of capital and incubators of invention, and attracting venture capital (VC) is of great importance for cities to advance in innovative technology and business models towards a sustainable and prosperous future. Yet we still lack a quantitative understanding of the relationship between urban characteristics and VC activities. In this paper, we find a clear nonlinear scaling relationship between VC activities and the urban population of Chinese cities. In such nonlinear systems, the widely applied linear per capita indicators would be either biased to larger cities or smaller cities depends on whether it is superlinear or sublinear, while the residual of cities relative to the prediction of scaling law is a more objective and scale-invariant metric. %(i.e., independent of the city size). Such a metric can distinguish the effects of local dynamics and scaled growth induced by the change of population size. The spatiotemporal evolution of such metrics on VC activities reveals three distinct groups of cities, two of which stand out with increasing and decreasing trends, respectively. And the taxonomy results together with spatial analysis also signify different development modes between large urban agglomeration regions. Besides, we notice the evolution of scaling exponents on VC activities are of much larger fluctuations than on socioeconomic output of cities, and a conceptual model that focuses on the growth dynamics of different sized cities can well explain it, which we assume would be general to other scenarios.
We show how the Shannon entropy function can be used as a basis to set up complexity measures weighting the economic efficiency of countries and the specialization of products beyond bare diversification. This entropy function guarantees the existence of a fixed point which is rapidly reached by an iterative scheme converging to our self-consistent measures. Our approach naturally allows to decompose into inter-sectorial and intra-sectorial contributions the country competitivity measure if products are partitioned into larger categories. Besides outlining the technical features and advantages of the method, we describe a wide range of results arising from the analysis of the obtained rankings and we benchmark these observations against those established with other economical parameters. These comparisons allow to partition countries and products into various main typologies, with well-revealed characterizing features. Our methods have wide applicability to general problems of ranking in bipartite networks.
We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multi-agent description leads to study the evolution over time of a system of kinetic equations for the wealth densities of susceptible, infectious and recovered individuals, whose proportions are driven by a classical compartmental model in epidemiology. Explicit calculations show that the spread of the disease seriously affects the distribution of wealth, which, unlike the situation in the absence of epidemics, can converge towards a stationary state with a bimodal form. Furthermore, simulations confirm the ability of the model to describe different phenomena characteristics of economic trends in situations compromised by the rapid spread of an epidemic, such as the unequal impact on the various wealth classes and the risk of a shrinking middle class.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا