No Arabic abstract
We characterize entanglement subject to its definition over real and complex, composite quantum systems. In particular, a method is established to assess quantum correlations with respect to a selected number system, illuminating the deeply rooted, yet rarely discussed question of why quantum states are described via complex numbers. With our experiment, we then realize two-photon polarization states that are entangled with respect to the notion of two rebits, comprising two two-level systems over real numbers. At the same time, the generated states are separable with respect to two complex qubits. Among other results, we reconstruct the best approximation of the generated states in terms of a real-valued, local expansion and show that this yields an incomplete description of our data. Conversely, the generated states are shown to be fully decomposable in terms of tensor-product states with complex wave functions. Thereby, we probe paradigms of quantum physics with modern theoretical tools and experimental platforms that are relevant for applications in quantum information science and technology and connected to the fundamentals of the quantum description of nature.
A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation.
We demonstrate that multipartite entanglement is able to characterize one-dimensional symmetry-protected topological order, which is witnessed by the scaling behavior of the quantum Fisher information of the ground state with respect to the spin operators defined in the dual lattice. We investigate an extended Kitaev chain with a $mathbf{Z}$ symmetry identified equivalently by winding numbers and paired Majorana zero modes at each end. The topological phases with high winding numbers are detected by the scaling coefficient of the quantum Fisher information density with respect to generators in different dual lattices. Containing richer properties and more complex structures than bipartite entanglement, the dual multipartite entanglement of the topological state has promising applications in robust quantum computation and quantum metrology, and can be generalized to identify topological order in the Kitaev honeycomb model.
We suggest and demonstrate a method to assess entanglement generation schemes based on mixing of Gaussian states at a beam splitter (BS). Our method is based on the fidelity criterion and represents a tool to analyze the effect of losses and noise before the BS in both symmetric and asymmetric channels with and without thermal effects. More generally, our scheme allows one to pre-assess entanglement resources and to optimize the design of BS-based schemes for the generation of continuous variable entanglement.
Two qubits in pure entangled states going through separate paths and interacting with their own individual environments will gradually lose their entanglement. Here we show that the entanglement change of a two-qubit state due to amplitude damping noises can be recovered by entanglement swapping. Some initial states can be asymptotically purified into maximally entangled states by iteratively using our protocol.
We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in [F.Huszar and N.M.T.Houlsby, Phys.Rev.A 85, 052120 (2012)] and provides an optimal measurement approach in terms of the information gain. We address the practical questions, which one faces in any experimental application: the influence of technical noise, and behavior of the tomographic algorithm for an easy to implement class of factorized measurements. In an experiment with polarization states of entangled photon pairs we observe a lower instrumental noise floor and superior reconstruction accuracy for nearly-pure states of the adaptive protocol compared to a non-adaptive. At the same time we show, that for the mixed states the restriction to factorized measurements results in no advantage for adaptive measurements, so general measurements have to be used.