Do you want to publish a course? Click here

Efficient Interaction of Heralded X-ray Photons with a Beam Splitter

57   0   0.0 ( 0 )
 Added by Sharon Shwartz
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the experimental demonstration of efficient interaction of multi kilo electron Volt heralded x-ray photons with a beam splitter. The measured heralded photon rate at the outputs of the beam splitter is about 0.01 counts/s which is comparable to the rate in the absence of the beam splitter. We use this beam splitter together with photon number and photon energy resolving detectors to show directly that single x ray photons cannot split. Our experiment demonstrates the major advantage of x rays for quantum optics: the possibility to observe experimental results with high fidelity and with negligible background.



rate research

Read More

We demonstrate an x-ray beam splitter with high performances for multi-kilo-electron-volt photons. The device is based on diffraction on kinoform structures, which overcome the limitations of binary diffraction gratings. This beam splitter achieves a dynamical splitting ratio in the range 0-99.1% by tilting the optics and is tunable, here shown in a photon energy range of 7.2-19 keV. High diffraction efficiency of 62.6% together with an extinction ratio of 0.6% is demonstrated at 12.4 keV, with angular separation for the split beam of 0.5 mrad. This device can find applications in beam monitoring at synchrotrons, at x-ray free electron lasers for online diagnostics and beamline multiplexing and, possibly, as key elements for delay lines or ultrashort x-ray pulses manipulation.
Harnessing nonlinearities strong enough to allow two single photons to interact with one another is not only a fascinating challenge but is central to numerous advanced applications in quantum information science. Currently, all known approaches are extremely challenging although a few have led to experimental realisations with attenuated classical laser light. This has included cross-phase modulation with weak classical light in atomic ensembles and optical fibres, converting incident laser light into a non-classical stream of photon or Rydberg blockades as well as all-optical switches with attenuated classical light in various atomic systems. Here we report the observation of a nonlinear parametric interaction between two true single photons. Single photons are initially generated by heralding one photon from each of two independent spontaneous parametric downconversion sources. The two heralded single photons are subsequently combined in a nonlinear waveguide where they are converted into a single photon with a higher energy. Our approach highlights the potential for quantum nonlinear optics with integrated devices, and as the photons are at telecom wavelengths, it is well adapted to applications in quantum communication.
374 - S. Reiche , G. Knopp , B. Pedrini 2020
X-ray free-electron lasers (FEL) deliver ultrabright X-ray pulses, but not the sequences of phase-coherent pulses required for time-domain interferometry and control of quantum states. For conventional split-and-delay schemes to produce such sequences the challenge stems from extreme stability requirements when splitting Angstrom wavelength beams where tiniest path length differences introduce phase jitter. We describe an FEL mode based on selective electron bunch degradation and transverse beam shaping in the accelerator, combined with a self-seeded photon emission scheme. Instead of splitting the photon pulses after their generation by the FEL, we split the electron bunch in the accelerator, prior to photon generation, to obtain phase-locked X-ray pulses with sub-femtosecond duration. Time-domain interferometry becomes possible, enabling the concomitant program of classical and quantum optics experiments with X-rays. The scheme leads to new scientific benefits of cutting-edge FELs with attosecond and/or high-repetition rate capabilities, ranging from the X-ray analog of Fourier transform infrared spectroscopy to damage-free measurements.
147 - Z. Y. Ou , B. H. Liu , F. W. Sun 2007
By using an asymmetric beam splitter, we observe the generalized Hong-Ou-Mandel effects for three and four photons, respectively. Furthermore, we can use this generalized Hong-Ou-Mandel interferometer to characterize temporal distinguishability.
61 - Guang Ping He 2020
Based on quantum counterfactual interaction-free measurement, we propose an implementation scheme for a beam splitter with anomalous reflection and transmission properties that looks impossible at first glance. Our scheme is stationary without requiring switchable mirrors and polarization rotators. Using the scheme for imaging will ensure that the optical radiation received by the object being imaged can be arbitrarily low. Thus it enables applications such as stealthy night vision devices that can work without detectable ambient light, or being used as a hackware against some counterfactual quantum cryptographic protocols.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا