Nowadays, hydrogen activation by frustrated Lewis pairs (FLPs) and their applications have been demonstrated to be one of emerge research topics in the field of catalysis. Previous studies have shown that the thermodynamics of these reaction is determined by electronic structures of FLPs and solvents. Herein, we investigated the systems consisting of typical FLPs and ionic liquids (ILs), which are well known by their large number of types and excellent solvent effects. The density functional theory (DFT) calculations were performed to study the thermodynamics for H2 activation by both inter- and intra-molecular FLPs, as well as the individual components. The results show that the computed overall Gibbs free energies in ILs are more negative than that computed in toluene. Through the thermodynamics partitioning, we find that ILs favor the H-H cleavage elemental step, while disfavored the elemental steps of proton attachment, hydride attachment and zwitterionic stabilization. Moreover, the results show that these effects are strongly dependent on the type of FLPs, where intra-molecular FLPs are more effected compared to the inter-molecular FLPs.