No Arabic abstract
Fanpy is a free and open-source Python library for developing and testing multideterminant wavefunctions and related ab initio methods in electronic structure theory. The main use of Fanpy is to quickly prototype new methods by making it easier to transfer the mathematical conception of a new wavefunction ans{a}tze to a working implementation. Fanpy uses the framework of our recently introduced Flexible Ansatz for N-electron Configuration Interaction (FANCI), where multideterminant wavefunctions are represented by their overlaps with Slater determinants of orthonormal spin-orbitals. In the simplest case, a new wavefunction ansatz can be implemented by simply writing a function for evaluating its overlap with an arbitrary Slater determinant. Fanpy is modular in both implementation and theory: the wavefunction model, the systems Hamiltonian, and the choice of objective function are all independent modules. This modular structure makes it easy for users to mix and match different methods and for developers to quickly try new ideas. Fanpy is written purely in Python with standard dependencies, making it accessible for most operating systems; it adheres to principles of modern software development, including comprehensive documentation, extensive testing, and continuous integration and delivery protocols. This article is considered to be the official release notes for the Fanpy library.
Ultrafast dynamics in chemical systems provide a unique access to fundamental processes at the molecular scale. A proper description of such systems is often very challenging because of the quantum nature of the problem. The concept of matrix product states (MPS), however, has proven its performance in describing such correlated quantum system in recent years for a wide range of applications. In this work, we continue the development of the MPS approach to study ultrafast electron dynamics in quantum chemical systems. The method combines time evolution schemes, such as fourth-order Runge-Kutta and Krylov space time evolution, with MPS, in order to solve the time-dependent Schrodinger equation efficiently. This allows for describing electron dynamics in molecules on a full configurational interaction (CI) level for a few femtoseconds after excitation. As a benchmark, we compare MPS based calculations to full CI calculations for a chain of hydrogen atoms and for the water molecule. Krylov space time evolution is in particular suited for the MPS approach, as it provides a wide range of opportunities to be adjusted to the reduced MPS dimension case. Finally, we apply the MPS approach to describe charge migration effects in iodoacetylene and find direct agreement between our results and experimental observations.
Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.
Ground state eigenvectors of the reduced Bardeen-Cooper-Schrieffer Hamiltonian are employed as a wavefunction ansatz to model strong electron correlation in quantum chemistry. This wavefunction is a product of weakly-interacting pairs of electrons. While other geminal wavefunctions may only be employed in a projected Schr{o}dinger equation, the present approach may be solved variationally with polynomial cost. The resulting wavefunctions are used to compute expectation values of Coulomb Hamiltionans and we present results for atoms and dissociation curves which are in agreement with doubly-occupied configuration interaction (DOCI) data. The present approach will serve as the starting point for a many-body theory of pairs, much as Hartree-Fock is the starting point for weakly-correlated electrons.
We study the general problem of mixing for ab-initio quantum-mechanical problems. Guided by general mathematical principles and the underlying physics, we propose a multisecant form of Broydens second method for solving the self-consistent field equations of Kohn-Sham density functional theory. The algorithm is robust, requires relatively little finetuning and appears to outperform the current state of the art, converging for cases that defeat many other methods. We compare our technique to the conventional methods for problems ranging from simple to nearly pathological.
Ab initio molecular dynamics (AIMD) is a valuable technique for studying molecules and materials at finite temperatures where the nuclei evolve on potential energy surfaces obtained from accurate electronic structure calculations. In this work, a quantum computer-based AIMD method is presented. The electronic energies are calculated on a quantum computer using the variational quantum eigensolver (VQE) method. We compute the energy gradients numerically using the Hellmann-Feynman theorem, finite differences, and a correlated sampling technique. Our method only requires additional classical calculations of electron integrals for each degree of freedom, without any additional computations on a quantum computer beyond the initial VQE run. To achieve comparable accuracy, our gradient calculation method requires three to five orders of magnitude fewer measurements than other brute force methods without correlated sampling. As a proof of concept, AIMD dynamics simulations are demonstrated for the H2 molecule on IBM quantum devices. To the best of our knowledge, it is the first successful attempt to run AIMD on quantum devices for a chemical system. In addition, we demonstrate the validity of the method for larger molecules using full configuration interaction (FCI) wave functions. As quantum hardware and noise mitigation techniques continue to improve, the method can be utilized for studying larger molecular and material systems.