No Arabic abstract
We present a Flexible Ansatz for N-body Configuration Interaction (FANCI) that includes any multideterminant wavefunction. This ansatz is a generalization of the Configuration Interaction (CI) wavefunction, where the coefficients are replaced by a specified function of certain parameters. By making an appropriate choice for this function, we can reproduce popular wavefunction structures like CI, Coupled-Cluster, Tensor Network States, and geminal-product wavefunctions. The universality of this framework suggests a programming structure that allows for the easy construction and optimization of arbitrary wavefunctions. Here, we will discuss the structures of the FANCI framework and its implications for wavefunction properties, particularly accuracy, cost, and size-consistency. We demonstrate the flexibility of this framework by reconstructing popular wavefunction ans{a}tze and modifying them to construct novel wavefunction forms. FANCI provides a powerful framework for exploring, developing, and testing new wavefunction forms.
We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], by introducing a semistochastic algorithm for performing multireference Epstein-Nesbet perturbation theory, in order to completely eliminate the severe memory bottleneck of the original method. The proposed algorithm has several attractive features. First, there is no sign problem that plagues several quantum Monte Carlo methods. Second, instead of using Metropolis-Hastings sampling, we use the Alias method to directly sample determinants from the reference wavefunction, thus avoiding correlations between consecutive samples. Third, in addition to removing the memory bottleneck, semistochastic HCI (SHCI) is faster than the deterministic variant for many systems if a stochastic error of 0.1 mHa is acceptable. Fourth, within the SHCI algorithm one can trade memory for a modest increase in computer time. Fifth, the perturbative calculation is embarrassingly parallel. The SHCI algorithm extends the range of applicability of the original algorithm, allowing us to calculate the correlation energy of very large active spaces. We demonstrate this by performing calculations on several first row dimers including F2 with an active space of (14e, 108o), Mn-Salen cluster with an active space of (28e, 22o), and Cr2 dimer with up to a quadruple-zeta basis set with an active space of (12e, 190o). For these systems we were able to obtain better than 1 mHa accuracy with a wall time of merely 55 seconds, 37 seconds, and 56 minutes on 1, 1, and 4 nodes, respectively.
An adaptation of the full configuration interaction quantum Monte Carlo (FCIQMC) method is presented, for correlated electron problems containing heavy elements and the presence of significant relativistic effects. The modified algorithm allows for the sampling of the four-component spinors of the Dirac--Coulomb(--Breit) Hamiltonian within the relativistic no-pair approximation. The loss of spin symmetry and the general requirement for complex-valued Hamiltonian matrix elements are the most immediate considerations in expanding the scope of FCIQMC into the relativistic domain, and the alternatives for their efficient implementation are motivated and demonstrated. For the canonical correlated four-component chemical benchmark application of Thallium Hydride, we show that the necessary modifications do not particularly adversely affect the convergence of the systematic (initiator) error to the exact correlation energy for FCIQMC calculations, which is primarily dictated by the sparsity of the wave function, allowing the computational effort to somewhat bypass the formal increases in Hilbert space dimension for these problems. We apply the method to the larger problem of the spectroscopic constants of Tin Oxide, correlating 28 electrons in 122 Kramers-paired spinors, finding good agreement with experimental and prior theoretical relativistic studies.
Following our recent work on the benzene molecule [href{https://doi.org/10.1063/5.0027617}{J.~Chem.~Phys.~textbf{153}, 176101 (2020)}], itself motivated by the blind challenge of Eriksen textit{et al.} [href{https://doi.org/10.1021/acs.jpclett.0c02621}{J.~Phys.~Chem.~Lett.~textbf{11}, 8922 (2020)}] on the same system, we report accurate full configuration interaction (FCI) frozen-core correlation energy estimates for twelve five- and six-membered ring molecules in the standard correlation-consistent double-$zeta$ Dunning basis set (cc-pVDZ). Our FCI correlation energy estimates, with estimated error smaller than 1 millihartree, are based on energetically optimized-orbital selected configuration interaction (SCI) calculations performed with the textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) algorithm. Having at our disposal these accurate reference energies, the respective performance and convergence properties of several popular and widely-used families of single-reference quantum chemistry methods are investigated. In particular, we study the convergence properties of i) the M{o}ller-Plesset perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the iterative approximate coupled-cluster series CC2, CC3, and CC4, and iii) the coupled-cluster series CCSD, CCSDT, and CCSDTQ. The performance of the ground-state gold standard CCSD(T) as well as the completely renormalized CC model, CR-CC(2,3), are also investigated.
We propose the use of preconditioning in FCIQMC which, in combination with perturbative estimators, greatly increases the efficiency of the algorithm. The use of preconditioning allows a time step close to unity to be used (without time-step errors), provided that multiple spawning attempts are made per walker. We show that this approach substantially reduces statistical noise on perturbative corrections to initiator error, which improve the accuracy of FCIQMC but which can suffer from significant noise in the original scheme. Therefore, the use of preconditioning and perturbatively-corrected estimators in combination leads to a significantly more efficient algorithm. In addition, a simpler approach to sampling variational and perturbative estimators in FCIQMC is presented, which also allows the variance of the energy to be calculated. These developments are investigated and applied to benzene (30e,108o), an example where accurate treatment is not possible with the original method.
We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the tradeoff between speed and accuracy, one which controls the selection of determinants to add to a variational wavefunction, and one which controls the the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly-correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few minutes on a single core. These systems have full variational spaces of 3x10^14 and 2x10^22 determinants respectively.