Based on Lorentz invariance and Born reciprocity invariance, the canonical quantization of Special Relativity (SR) has been shown to provide a unified origin for the existence of Diracs Hamiltonian and a self adjoint time operator that circumvents Paulis objection. As such, this approach restores to Quantum Mechanics (QM) the treatment of space and time on an equivalent footing as that of momentum and energy. Second quantization of the time operator field follows step by step that of the Dirac Hamiltonian field. It introduces the concept of time quanta, in a similar way to the energy quanta in Quantum Field Theory (QFT). An early connection is found allready in Feshbachs unified theory of nuclear reactions. Its possible relevance in current developments such as Feshbach resonances in the fields of cold atom systems, of Bose-Einstein condensates and in the problem of time in Quantum Gravity is noted. .