We study the kinetics of the two-dimensional q > 4-state Potts model after a shallow quench slightly below the critical temperature and above the pseudo spinodal. We use numerical methods and we focus on intermediate values of q, 4 < q < 100. We show that, initially, the system evolves as if it were quenched to the critical temperature. The further decay from the metastable state occurs by nucleation of k out of the q possible phases. For a given quench temperature, k is a logarithmically increasing function of the system size. This unusual finite size dependence is a consequence of a scaling symmetry underlying the nucleation phenomenon for these parameters.