Do you want to publish a course? Click here

Warning Propagation on random graphs

117   0   0.0 ( 0 )
 Added by Oliver Cooley
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Warning Propagation is a combinatorial message passing algorithm that unifies and generalises a wide variety of recursive combinatorial procedures. Special cases include the Unit Clause Propagation and Pure Literal algorithms for satisfiability as well as the peeling process for identifying the $k$-core of a random graph. Here we analyse Warning Propagation in full generality on the binomial random graph. We prove that under a mild stability assumption Warning Propagation converges rapidly. In effect, the analysis of the fixed point of the message passing process on a random graph reduces to analysing the process on a Galton-Watson tree. This result corroborates and generalises a heuristic first put forward by Pittel, Spencer and Wormald in their seminal $k$-core paper (JCTB 1996).



rate research

Read More

Majority dynamics on a graph $G$ is a deterministic process such that every vertex updates its $pm 1$-assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, ODonnel, Tamuz and Tan conjectured that, in the ErdH{o}s--Renyi random graph $G(n,p)$, the random initial $pm 1$-assignment converges to a $99%$-agreement with high probability whenever $p=omega(1/n)$. This conjecture was first confirmed for $pgeqlambda n^{-1/2}$ for a large constant $lambda$ by Fountoulakis, Kang and Makai. Although this result has been reproved recently by Tran and Vu and by Berkowitz and Devlin, it was unknown whether the conjecture holds for $p< lambda n^{-1/2}$. We break this $Omega(n^{-1/2})$-barrier by proving the conjecture for sparser random graphs $G(n,p)$, where $lambda n^{-3/5}log n leq p leq lambda n^{-1/2}$ with a large constant $lambda>0$.
We provide precise asymptotic estimates for the number of several classes of labelled cubic planar graphs, and we analyze properties of such random graphs under the uniform distribution. This model was first analyzed by Bodirsky et al. (Random Structures Algorithms 2007). We revisit their work and obtain new results on the enumeration of cubic planar graphs and on random cubic planar graphs. In particular, we determine the exact probability of a random cubic planar graph being connected, and we show that the distribution of the number of triangles in random cubic planar graphs is asymptotically normal with linear expectation and variance. To the best of our knowledge, this is the first time one is able to determine the asymptotic distribution for the number of copies of a fixed graph containing a cycle in classes of random planar graphs arising from planar maps.
91 - Stefan Glock 2021
We show that for $dge d_0(epsilon)$, with high probability, the random graph $G(n,d/n)$ contains an induced path of length $(3/2-epsilon)frac{n}{d}log d$. This improves a result obtained independently by Luczak and Suen in the early 90s, and answers a question of Fernandez de la Vega. Along the way, we generalize a recent result of Cooley, Draganic, Kang and Sudakov who studied the analogous problem for induced matchings.
165 - Simon Griffiths 2011
We show that a number of conditions on oriented graphs, all of which are satisfied with high probability by randomly oriented graphs, are equivalent. These equivalences are similar to those given by Chung, Graham and Wilson in the case of unoriented graphs, and by Chung and Graham in the case of tournaments. Indeed, our main theorem extends to the case of a general underlying graph G the main result of Chung and Graham which corresponds to the case that G is complete. One interesting aspect of these results is that exactly two of the four orientations of a four-cycle can be used for a quasi-randomness condition, i.e., if the number of appearances they make in D is close to the expected number in a random orientation of the same underlying graph, then the same is true for every small oriented graph H
We consider the localization game played on graphs in which a cop tries to determine the exact location of an invisible robber by exploiting distance probes. The corresponding graph parameter $zeta(G)$ for a given graph $G$ is called the localization number. In this paper, we improve the bounds for dense random graphs determining an asymptotic behaviour of $zeta(G)$. Moreover, we extend the argument to sparse graphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا