Do you want to publish a course? Click here

On a divisor of the central binomial coefficient

165   0   0.0 ( 0 )
 Added by Matthew Just
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

It is well known that for all $ngeq1$ the number $n+ 1$ is a divisor of the central binomial coefficient ${2nchoose n}$. Since the $n$th central binomial coefficient equals the number of lattice paths from $(0,0)$ to $(n,n)$ by unit steps north or east, a natural question is whether there is a way to partition these paths into sets of $n+ 1$ paths or $n+1$ equinumerous sets of paths. The Chung-Feller theorem gives an elegant answer to this question. We pose and deliver an answer to the analogous question for $2n-1$, another divisor of ${2nchoose n}$. We then show our main result follows from a more general observation regarding binomial coefficients ${nchoose k}$ with $n$ and $k$ relatively prime. A discussion of the case where $n$ and $k$ are not relatively prime is also given, highlighting the limitations of our methods. Finally, we come full circle and give a novel interpretation of the Catalan numbers.



rate research

Read More

In this paper, we study growth rate of product of sets in the Heisenberg group over finite fields and the complex numbers. More precisely, we will give improvements and extensions of recent results due to Hegyv{a}ri and Hennecart (2018).
We give a limit theorem with respect to the matrices related to non-backtracking paths of a regular graph. The limit obtained closely resembles the $k$th moments of the arcsine law. Furthermore, we obtain the asymptotics of the averages of the $p^m$th Fourier coefficients of the cusp forms related to the Ramanujan graphs defined by A. Lubotzky, R. Phillips and P. Sarnak.
For a binomial random variable $xi$ with parameters $n$ and $b/n$, it is well known that the median equals $b$ when $b$ is an integer. In 1968, Jogdeo and Samuels studied the behaviour of the relative difference between ${sf P}(xi=b)$ and $1/2-{sf P}(xi<b)$. They proved its monotonicity in $n$ and posed a question about its monotonicity in $b$. This question is motivated by the solved problem proposed by Ramanujan in 1911 on the monotonicity of the same quantity but for a Poisson random variable with an integer parameter $b$. In the paper, we answer this question and introduce a simple way to analyse the monotonicity of similar functions.
Let $mathbb{F}_q$ be a finite field of order $q$, and $P$ be the paraboloid in $mathbb{F}_q^3$ defined by the equation $z=x^2+y^2$. A tuple $(a, b, c, d)in P^4$ is called a non-trivial energy tuple if $a+b=c+d$ and $a, b, c, d$ are distinct. For $Xsubset P$, let $mathcal{E}^+(X)$ be the number of non-trivial energy tuples in $X$. It was proved recently by Lewko (2020) that $mathcal{E}^+(X)ll |X|^{frac{99}{41}}$ for $|X|ll q^{frac{26}{21}}$. The main purposes of this paper are to prove lower bounds of $mathcal{E}^+(X)$ and to study related questions by using combinatorial arguments and a weak hypergraph regularity lemma developed recently by Lyall and Magyar (2020).
Let $Gamma$ be a compact tropical curve (or metric graph) of genus $g$. Using the theory of tropical theta functions, Mikhalkin and Zharkov proved that there is a canonical effective representative (called a break divisor) for each linear equivalence class of divisors of degree $g$ on $Gamma$. We present a new combinatorial proof of the fact that there is a unique break divisor in each equivalence class, establishing in the process an integral version of this result which is of independent interest. As an application, we provide a geometric proof of (a dual version of) Kirchhoffs celebrated Matrix-Tree Theorem. Indeed, we show that each weighted graph model $G$ for $Gamma$ gives rise to a canonical polyhedral decomposition of the $g$-dimensional real torus ${rm Pic}^g(Gamma)$ into parallelotopes $C_T$, one for each spanning tree $T$ of $G$, and the dual Kirchhoff theorem becomes the statement that the volume of ${rm Pic}^g(Gamma)$ is the sum of the volumes of the cells in the decomposition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا