No Arabic abstract
We consider the motion of massive and massless particles in a five-dimensional spacetime with a compactified extra-dimensional space where a black hole is localized, i.e., a caged black hole spacetime. We show the existence of circular orbits and reveal their sequences and stability. In the asymptotic region, stable circular orbits always exist, which implies that four-dimensional gravity is more dominant because of the small extra-dimensional space. In the vicinity of a black hole, they do not exist because the effect of compactification is no longer effective. We also clarify the dependence of the sequences of circular orbits on the size of the extra-dimensional space by determining the appearance of the innermost stable circular orbit and the last circular orbit (i.e., the unstable photon circular orbit).
We consider the dynamics of particles, particularly focusing on circular orbits in the higher-dimensional Majumdar-Papapetrou (MP) spacetimes with two equal mass black holes. It is widely known that in the 5D Schwarzschild-Tangherlini and Myers-Perry backgrounds, there are no stable circular orbits. In contrast, we show that in the 5D MP background, stable circular orbits can always exist when the separation of two black holes is large enough. More precisely, for a large separation, stable circular orbits exist from the vicinity of horizons to infinity; for a medium one, they appear only in a certain finite region bounded by the innermost stable circular orbit and the outermost stable circular orbit outside the horizons; for a small one, they do not appear at all. Moreover, we show that in MP spacetimes in more than 5D, they do not exist for any separations.
We study linear nonradial perturbations and stability of a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a test particle in stationary axisymmetric spacetimes which possess a reflection symmetry with respect to the equatorial plane. The proposed approach is applied to Kerr solution and Majumdar-Papapetrou solution to Einstein equation. Finally, we reexamine MSCOs for a modified metric of a rapidly spinning black hole that has been recently proposed by Johannsen and Psaltis [PRD, 83, 124015 (2011)]. We show that, for the Johannsen and Psaltiss model, circular orbits that are stable against radial perturbations for some parameter region become unstable against vertical perturbations. This suggests that the last circular orbit for this model may be larger than the ISCO.
The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in a Schwarzschild background. The radial equations of the corresponding gauge invariant variable obtained are shown to be the same as in the Newman-Penrose formalism. These equations are then applied to the evaluation of the quasinormal mode frequencies, as well as the absorption probabilities of the gravitino field scattering in this background.
We study the innermost stable circular orbit (ISCO) of a spinning test particle moving in the vicinity of an axially symmetric rotating braneworld black hole (BH). We start with the description of the event horizon, static limit surface and ergosphere region of such BH and bring out the effect of tidal charge parameter on ergosphere. It is found that the ISCO of rotating braneworld BH is very sensitive to braneworld BH parameter C (also known as tidal charge parameter) in addition to its rotation parameter. We further discovered that the orbital radius of the spinning test particles changes non monotonously with the braneworld BH tidal charge parameter. It is found that for rotating braneworld BH the allowed range of the particle spin grows as the tidal charge parameter C decreases, in contrast with the Kerr Newman BH. We also found the similar behavior of the particles spin for the braneworld Reissner Nordstrom (C < 0) BH in contrast with its counterpart having (C > 0).
We have performed a detailed analysis of orbital motion in the vicinity of a nearly extremal Kerr black hole. For very rapidly rotating black holes (spin a=J/M>0.9524M) we have found a class of very strong field eccentric orbits whose angular momentum L_z increases with the orbits inclination with respect to the equatorial plane, while keeping latus rectum and eccentricity fixed. This behavior is in contrast with Newtonian intuition, and is in fact opposite to the normal behavior of black hole orbits. Such behavior was noted previously for circular orbits; since it only applies to orbits very close to the black hole, they were named nearly horizon-skimming orbits. Our analysis generalizes this result, mapping out the full generic (inclined and eccentric) family of nearly horizon-skimming orbits. The earlier work on circular orbits reported that, under gravitational radiation emission, nearly horizon-skimming orbits tend to evolve to smaller orbit inclination, toward prograde equatorial configuration. Normal orbits, by contrast, always demonstrate slowly growing orbit inclination (orbits evolve toward the retrograde equatorial configuration). Using up-to-date Teukolsky-fluxes, we have concluded that the earlier result was incorrect: all circular orbits, including nearly horizon-skimming ones, exhibit growing orbit inclination. Using kludge fluxes based on a Post-Newtonian expansion corrected with fits to circular and to equatorial Teukolsky-fluxes, we argue that the inclination grows also for eccentric nearly horizon-skimming orbits. We also find that the inclination change is, in any case, very small. As such, we conclude that these orbits are not likely to have a clear and peculiar imprint on the gravitational waveforms expected to be measured by the space-based detector LISA.