Do you want to publish a course? Click here

A NIR-to-VIS face recognition via part adaptive and relation attention module

75   0   0.0 ( 0 )
 Added by Rushuang Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In the face recognition application scenario, we need to process facial images captured in various conditions, such as at night by near-infrared (NIR) surveillance cameras. The illumination difference between NIR and visible-light (VIS) causes a domain gap between facial images, and the variations in pose and emotion also make facial matching more difficult. Heterogeneous face recognition (HFR) has difficulties in domain discrepancy, and many studies have focused on extracting domain-invariant features, such as facial part relational information. However, when pose variation occurs, the facial component position changes, and a different part relation is extracted. In this paper, we propose a part relation attention module that crops facial parts obtained through a semantic mask and performs relational modeling using each of these representative features. Furthermore, we suggest component adaptive triplet loss function using adaptive weights for each part to reduce the intra-class identity regardless of the domain as well as pose. Finally, our method exhibits a performance improvement in the CASIA NIR-VIS 2.0 and achieves superior result in the BUAA-VisNir with large pose and emotion variations.

rate research

Read More

97 - Hang Du , Hailin Shi , Yinglu Liu 2021
Near-infrared to visible (NIR-VIS) face recognition is the most common case in heterogeneous face recognition, which aims to match a pair of face images captured from two different modalities. Existing deep learning based methods have made remarkable progress in NIR-VIS face recognition, while it encounters certain newly-emerged difficulties during the pandemic of COVID-19, since people are supposed to wear facial masks to cut off the spread of the virus. We define this task as NIR-VIS masked face recognition, and find it problematic with the masked face in the NIR probe image. First, the lack of masked face data is a challenging issue for the network training. Second, most of the facial parts (cheeks, mouth, nose etc.) are fully occluded by the mask, which leads to a large amount of loss of information. Third, the domain gap still exists in the remaining facial parts. In such scenario, the existing methods suffer from significant performance degradation caused by the above issues. In this paper, we aim to address the challenge of NIR-VIS masked face recognition from the perspectives of training data and training method. Specifically, we propose a novel heterogeneous training method to maximize the mutual information shared by the face representation of two domains with the help of semi-siamese networks. In addition, a 3D face reconstruction based approach is employed to synthesize masked face from the existing NIR image. Resorting to these practices, our solution provides the domain-invariant face representation which is also robust to the mask occlusion. Extensive experiments on three NIR-VIS face datasets demonstrate the effectiveness and cross-dataset-generalization capacity of our method.
Video data is with complex temporal dynamics due to various factors such as camera motion, speed variation, and different activities. To effectively capture this diverse motion pattern, this paper presents a new temporal adaptive module ({bf TAM}) to generate video-specific temporal kernels based on its own feature map. TAM proposes a unique two-level adaptive modeling scheme by decoupling the dynamic kernel into a location sensitive importance map and a location invariant aggregation weight. The importance map is learned in a local temporal window to capture short-term information, while the aggregation weight is generated from a global view with a focus on long-term structure. TAM is a modular block and could be integrated into 2D CNNs to yield a powerful video architecture (TANet) with a very small extra computational cost. The extensive experiments on Kinetics-400 and Something-Something datasets demonstrate that our TAM outperforms other temporal modeling methods consistently, and achieves the state-of-the-art performance under the similar complexity. The code is available at url{ https://github.com/liu-zhy/temporal-adaptive-module}.
Facial action unit (AU) detection and face alignment are two highly correlated tasks, since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. However, most existing AU detection works handle the two tasks independently by treating face alignment as a preprocessing, and often use landmarks to predefine a fixed region or attention for each AU. In this paper, we propose a novel end-to-end deep learning framework for joint AU detection and face alignment, which has not been explored before. In particular, multi-scale shared feature is learned firstly, and high-level feature of face alignment is fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively. Finally, the assembled local features are integrated with face alignment feature and global feature for AU detection. Extensive experiments demonstrate that our framework (i) significantly outperforms the state-of-the-art AU detection methods on the challenging BP4D, DISFA, GFT and BP4D+ benchmarks, (ii) can adaptively capture the irregular region of each AU, (iii) achieves competitive performance for face alignment, and (iv) also works well under partial occlusions and non-frontal poses. The code for our method is available at https://github.com/ZhiwenShao/PyTorch-JAANet.
Face Super-Resolution (SR) is a subfield of the SR domain that specifically targets the reconstruction of face images. The main challenge of face SR is to restore essential facial features without distortion. We propose a novel face SR method that generates photo-realistic 8x super-resolved face images with fully retained facial details. To that end, we adopt a progressive training method, which allows stable training by splitting the network into successive steps, each producing output with a progressively higher resolution. We also propose a novel facial attention loss and apply it at each step to focus on restoring facial attributes in greater details by multiplying the pixel difference and heatmap values. Lastly, we propose a compressed version of the state-of-the-art face alignment network (FAN) for landmark heatmap extraction. With the proposed FAN, we can extract the heatmaps suitable for face SR and also reduce the overall training time. Experimental results verify that our method outperforms state-of-the-art methods in both qualitative and quantitative measurements, especially in perceptual quality.
Recent deep learning based face recognition methods have achieved great performance, but it still remains challenging to recognize very low-resolution query face like 28x28 pixels when CCTV camera is far from the captured subject. Such face with very low-resolution is totally out of detail information of the face identity compared to normal resolution in a gallery and hard to find corresponding faces therein. To this end, we propose a Resolution Invariant Model (RIM) for addressing such cross-resolution face recognition problems, with three distinct novelties. First, RIM is a novel and unified deep architecture, containing a Face Hallucination sub-Net (FHN) and a Heterogeneous Recognition sub-Net (HRN), which are jointly learned end to end. Second, FHN is a well-designed tri-path Generative Adversarial Network (GAN) which simultaneously perceives facial structure and geometry prior information, i.e. landmark heatmaps and parsing maps, incorporated with an unsupervised cross-domain adversarial training strategy to super-resolve very low-resolution query image to its 8x larger ones without requiring them to be well aligned. Third, HRN is a generic Convolutional Neural Network (CNN) for heterogeneous face recognition with our proposed residual knowledge distillation strategy for learning discriminative yet generalized feature representation. Quantitative and qualitative experiments on several benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts. Codes and models will be released upon acceptance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا