We study the finite convergence of iterative methods for solving convex feasibility problems. Our key assumptions are that the interior of the solution set is nonempty and that certain overrelaxation parameters converge to zero, but with a rate slower than any geometric sequence. Unlike other works in this area, which require divergent series of overrelaxations, our approach allows us to consider some summable series. By employing quasi-Fej{e}rian analysis in the latter case, we obtain additional asymptotic convergence guarantees, even when the interior of the solution set is empty.