Do you want to publish a course? Click here

Graph Neural Networks to Predict Customer Satisfaction Following Interactions with a Corporate Call Center

53   0   0.0 ( 0 )
 Added by Teja Kanchinadam
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Customer satisfaction is an important factor in creating and maintaining long-term relationships with customers. Near real-time identification of potentially dissatisfied customers following phone calls can provide organizations the opportunity to take meaningful interventions and to foster ongoing customer satisfaction and loyalty. This work describes a fully operational system we have developed at a large US company for predicting customer satisfaction following incoming phone calls. The system takes as an input speech-to-text transcriptions of calls and predicts call satisfaction reported by customers on post-call surveys (scale from 1 to 10). Because of its ordinal, subjective, and often highly-skewed nature, predicting survey scores is not a trivial task and presents several modeling challenges. We introduce a graph neural network (GNN) approach that takes into account the comparative nature of the problem by considering the relative scores among batches, instead of only pairs of calls when training. This approach produces more accurate predictions than previous approaches including standard regression and classification models that directly fit the survey scores with call data. Our proposed approach can be easily generalized to other customer satisfaction prediction problems.

rate research

Read More

Graph neural networks (GNNs) are a class of powerful machine learning tools that model node relations for making predictions of nodes or links. GNN developers rely on quantitative metrics of the predictions to evaluate a GNN, but similar to many other neural networks, it is difficult for them to understand if the GNN truly learns characteristics of a graph as expected. We propose an approach to corresponding an input graph to its node embedding (aka latent space), a common component of GNNs that is later used for prediction. We abstract the data and tasks, and develop an interactive multi-view interface called CorGIE to instantiate the abstraction. As the key function in CorGIE, we propose the K-hop graph layout to show topological neighbors in hops and their clustering structure. To evaluate the functionality and usability of CorGIE, we present how to use CorGIE in two usage scenarios, and conduct a case study with two GNN experts.
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks such as node classification and link prediction. However, important unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs. In this paper, we study unsupervised training of GNN pooling in terms of their clustering capabilities. We start by drawing a connection between graph clustering and graph pooling: intuitively, a good graph clustering is what one would expect from a GNN pooling layer. Counterintuitively, we show that this is not true for state-of-the-art pooling methods, such as MinCut pooling. To address these deficiencies, we introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality, and show how it tackles recovery of the challenging clustering structure of real-world graphs. In order to clarify the regimes where existing methods fail, we carefully design a set of experiments on synthetic data which show that DMoN is able to jointly leverage the signal from the graph structure and node attributes. Similarly, on real-world data, we show that DMoN produces high quality clusters which correlate strongly with ground truth labels, achieving state-of-the-art results.
121 - J. Wang , X. Liu , S. Shen 2021
Drug combination therapy has become a increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug combinations. Graph neural network have recently shown remarkable performance in the prediction of compound-protein interactions, but it has not been applied to the screening of drug combinations. In this paper, we proposed a deep learning model based on graph neural networks and attention mechanism to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of drug molecule structure and gene expression profiles were taken as input to multi-layer feedforward neural network to identify the synergistic drug combinations. We compared DeepDDS with classical machine learning methods and other deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS achieved better performance than competitive methods. Also, on an independent test set released by well-known pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive precision. Furthermore, we explored the interpretability of the graph attention network, and found the correlation matrix of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool that prioritized synergistic drug combinations for further wet-lab experiment validation.
Gaining more comprehensive knowledge about drug-drug interactions (DDIs) is one of the most important tasks in drug development and medical practice. Recently graph neural networks have achieved great success in this task by modeling drugs as nodes and drug-drug interactions as links and casting DDI predictions as link prediction problems. However, correlations between link labels (e.g., DDI types) were rarely considered in existing works. We propose the graph energy neural network (GENN) to explicitly model link type correlations. We formulate the DDI prediction task as a structure prediction problem and introduce a new energy-based model where the energy function is defined by graph neural networks. Experiments on two real-world DDI datasets demonstrated that GENN is superior to many baselines without consideration of link type correlations and achieved $13.77%$ and $5.01%$ PR-AUC improvement on the two datasets, respectively. We also present a case study in which mname can better capture meaningful DDI correlations compared with baseline models.
Network data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this graph structure. In this work, we leverage graph signal processing to characterize the representation space of graph neural networks (GNNs). We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology. These two properties offer insight about the workings of GNNs and help explain their scalability and transferability properties which, coupled with their local and distributed nature, make GNNs powerful tools for learning in physical networks. We also introduce GNN extensions using edge-varying and autoregressive moving average graph filters and discuss their properties. Finally, we study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا