Do you want to publish a course? Click here

Enhancing the Intelligibility of Cleft Lip and Palate Speech using Cycle-consistent Adversarial Networks

124   0   0.0 ( 0 )
 Added by Protima Nomo Sudro
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Cleft lip and palate (CLP) refer to a congenital craniofacial condition that causes various speech-related disorders. As a result of structural and functional deformities, the affected subjects speech intelligibility is significantly degraded, limiting the accessibility and usability of speech-controlled devices. Towards addressing this problem, it is desirable to improve the CLP speech intelligibility. Moreover, it would be useful during speech therapy. In this study, the cycle-consistent adversarial network (CycleGAN) method is exploited for improving CLP speech intelligibility. The model is trained on native Kannada-speaking childrens speech data. The effectiveness of the proposed approach is also measured using automatic speech recognition performance. Further, subjective evaluation is performed, and those results also confirm the intelligibility improvement in the enhanced speech over the original.



rate research

Read More

The intelligibility of speech severely degrades in the presence of environmental noise and reverberation. In this paper, we propose a novel deep learning based system for modifying the speech signal to increase its intelligibility under the equal-power constraint, i.e., signal power before and after modification must be the same. To achieve this, we use generative adversarial networks (GANs) to obtain time-frequency dependent amplification factors, which are then applied to the input raw speech to reallocate the speech energy. Instead of optimizing only a single, simple metric, we train a deep neural network (DNN) model to simultaneously optimize multiple advanced speech metrics, including both intelligibility- and quality-related ones, which results in notable improvements in performance and robustness. Our system can not only work in non-realtime mode for offline audio playback but also support practical real-time speech applications. Experimental results using both objective measurements and subjective listening tests indicate that the proposed system significantly outperforms state-ofthe-art baseline systems under various noisy and reverberant listening conditions.
138 - Haoyu Li , Szu-Wei Fu , Yu Tsao 2020
The intelligibility of natural speech is seriously degraded when exposed to adverse noisy environments. In this work, we propose a deep learning-based speech modification method to compensate for the intelligibility loss, with the constraint that the root mean square (RMS) level and duration of the speech signal are maintained before and after modifications. Specifically, we utilize an iMetricGAN approach to optimize the speech intelligibility metrics with generative adversarial networks (GANs). Experimental results show that the proposed iMetricGAN outperforms conventional state-of-the-art algorithms in terms of objective measures, i.e., speech intelligibility in bits (SIIB) and extended short-time objective intelligibility (ESTOI), under a Cafeteria noise condition. In addition, formal listening tests reveal significant intelligibility gains when both noise and reverberation exist.
Over the past year, remote speech intelligibility testing has become a popular and necessary alternative to traditional in-person experiments due to the need for physical distancing during the COVID-19 pandemic. A remote framework was developed for conducting speech intelligibility tests with normal hearing listeners. In this study, subjects used their personal computers to complete sentence recognition tasks in anechoic and reverberant listening environments. The results obtained using this remote framework were compared with previously collected in-lab results, and showed higher levels of speech intelligibility among remote study participants than subjects who completed the test in the laboratory.
Speech is a means of communication which relies on both audio and visual information. The absence of one modality can often lead to confusion or misinterpretation of information. In this paper we present an end-to-end temporal model capable of directly synthesising audio from silent video, without needing to transform to-and-from intermediate features. Our proposed approach, based on GANs is capable of producing natural sounding, intelligible speech which is synchronised with the video. The performance of our model is evaluated on the GRID dataset for both speaker dependent and speaker independent scenarios. To the best of our knowledge this is the first method that maps video directly to raw audio and the first to produce intelligible speech when tested on previously unseen speakers. We evaluate the synthesised audio not only based on the sound quality but also on the accuracy of the spoken words.
Cycle-consistent generative adversarial networks (CycleGAN) have shown their promising performance for speech enhancement (SE), while one intractable shortcoming of these CycleGAN-based SE systems is that the noise components propagate throughout the cycle and cannot be completely eliminated. Additionally, conventional CycleGAN-based SE systems only estimate the spectral magnitude, while the phase is unaltered. Motivated by the multi-stage learning concept, we propose a novel two-stage denoising system that combines a CycleGAN-based magnitude enhancing network and a subsequent complex spectral refining network in this paper. Specifically, in the first stage, a CycleGAN-based model is responsible for only estimating magnitude, which is subsequently coupled with the original noisy phase to obtain a coarsely enhanced complex spectrum. After that, the second stage is applied to further suppress the residual noise components and estimate the clean phase by a complex spectral mapping network, which is a pure complex-valued network composed of complex 2D convolution/deconvolution and complex temporal-frequency attention blocks. Experimental results on two public datasets demonstrate that the proposed approach consistently surpasses previous one-stage CycleGANs and other state-of-the-art SE systems in terms of various evaluation metrics, especially in background noise suppression.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا