Do you want to publish a course? Click here

Influence of Biomass Emissions upon Habitability, Biosignatures and Detectability in Earth-like Atmospheres

96   0   0.0 ( 0 )
 Added by John Lee Grenfell
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate atmospheric responses of modeled hypothetical Earth-like planets in the habitable zone of the M-dwarf AD Leonis to reduced oxygen (O2), removed biomass (dead Earth), varying carbon dioxide (CO2) and surface relative humidity (sRH). Results suggest large O2 differences between the reduced O2 and dead scenarios in the lower but not the upper atmosphere. Ozone (O3) and nitrous oxide (N2O) also show this behavior. Methane depends on hydroxyl (OH), its main sink. Abiotic production of N2O occurs in the upper layers. Chloromethane (CH3Cl) decreases everywhere on decreasing biomass. Changing CO2 (from x1 to x100 present atmospheric level (PAL)) and surface relative humidity (sRH) (from 0.1 percent to 100 percent) does not influence CH3Cl as much as lowering biomass. Therefore, CH3Cl can be considered a good biosignature. Changing sRH and CO2 has a greater influence on temperature than O2 and biomass alone. Changing the biomass produces ~6 kilometer (km) in effective height (H) in transmission compared with changing CO2 and sRH ( about 25km). In transmission O2 is discernible at 0.76 microns for greater than 0.1 PAL. The O3 9.6 micron band was weak for the low O2 runs and difficult to discern from dead Earth, however O3 at 0.3 microns could serve as an indicator to distinguish between reduced O2 and dead Earth. Spectral features of N2O and CH3Cl corresponded to some km H. CH4 could be detectable tens of parsecs away with ELT except for the 10-4 and 10-6 PAL O2 scenarios. O2 is barely detectable for the 1 PAL O2 case and unfeasible at lower abundances.



rate research

Read More

Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, change under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N2-O2 dominated, atmospheres orbiting the Sun at 1 Astronomical Unit. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 bar to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2{mu}m - 20{mu}m. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates and the surface temperature decreases, reaching surface temperatures below 273K (approximately at ~34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres.
Atmospheric temperature and mixing ratio profiles of terrestrial planets vary with the spectral energy flux distribution for different types of M-dwarf stars and the planetary gravity. We investigate the resulting effects on the spectral appearance of molecular absorption bands, that are relevant as indicators for potential planetary habitability during primary and secondary eclipse for transiting terrestrial planets with Earth-like biomass emissions. Atmospheric profiles are computed using a plane-parallel, 1D climate model coupled with a chemistry model. We then calculate simulated spectra using a line-by-line radiative transfer model. We find that emission spectra during secondary eclipse show increasing absorption of methane, water and ozone for planets orbiting quiet M0-M3 dwarfs and the active M-type star AD Leo compared to solar type central stars. However, for planets orbiting very cool and quiet M dwarfs (M4 to M7), increasing temperatures in the mid-atmosphere lead to reduced absorption signals, making the detection of molecules more difficult in such scenarios. Transmission spectra during primary eclipse show strong absorption features of CH4, N2O and H2O for planets orbiting quiet M0-M7 stars and AD Leo. The N2O absorption of an Earth-sized planet orbiting a quiet M7 star can even be as strong as the CO2 signal. However, ozone absorption decreases for planets orbiting such cool central stars due to chemical effects in the atmosphere. To investigate the effect on the spectroscopic detection of absorption bands with potential future satellite missions, we compute signal-to-noise-ratios (SNR) for a James Webb Space Telescope (JWST)-like aperture telescope.
We find that variations in the UV emissions of cool M-dwarf stars have a potentially large impact upon atmospheric biosignatures in simulations of Earth-like exoplanets i.e. planets with Earths development, and biomass and a molecular nitrogen-oxygen dominated atmosphere. Starting with an assumed black-body stellar emission for an M7 class dwarf star, the stellar UV irradiation was increased stepwise and the resulting climate-photochemical response of the planetary atmosphere was calculated. Results suggest a Goldilocks effect with respect to the spectral detection of ozone. At weak UV levels, the ozone column was weak (due to weaker production from the Chapman mechanism) hence its spectral detection was challenging. At strong UV levels, ozone formation is stronger but its associated stratospheric heating leads to a weakening in temperature gradients between the stratosphere and troposphere, which results in weakened spectral bands. Also, increased UV levels can lead to enhanced abundances of hydrogen oxides which oppose the ozone formation effect. At intermediate UV (i.e. with x10 the stellar UV radiative flux of black body Planck curves corresponding to spectral class M7) the conditions are just right for spectral detection. Results suggest that the planetary O3 profile is sensitive to the UV output of the star from about(200-350) nm. We also investigated the effect of increasing the top-of-atmosphere incoming Lyman-alpha radiation but this had only a minimal effect on the biosignatures since it was efficiently absorbed in the uppermost planetary atmospheric layer, mainly by abundant methane. Earlier studies have suggested that the planetary methane is an important stratospheric heater which critically affects the vertical temperature gradient, hence the strength of spectral emission bands.
Spectral characterization of Super-Earth atmospheres for planets orbiting in the Habitable Zone of M-dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of one bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by Rauer et al. (2011). The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex- life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in the terrestrial stratosphere) to smog-dominated ozone production for planets in the Habitable Zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production.
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most 1D models. We compared the results to those of 3D model calculations in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When treating the surface albedo and the relative humidity profile as parameters in 1D model studies and using the habitability constraints found by recent 3D modeling studies, the same conclusions about the potential habitability of a planet can be drawn as from 3D model calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا