Do you want to publish a course? Click here

A Heavy Molecular Weight Atmosphere for the Super-Earth {pi} Men c

69   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strongly irradiated exoplanets develop extended atmospheres that can be utilized to probe the deeper planet layers. This connection is particularly useful in the study of small exoplanets, whose bulk atmospheres are challenging to characterize directly. Here, we report the 3.4{sigma} detection of C II ions during a single transit of the super-Earth {pi} Men c in front of its Sun-like host star. The transit depth and Doppler velocities are consistent with the ions filling the planets Roche lobe and moving preferentially away from the star, an indication that they are escaping the planet. We argue that {pi} Men c possesses a thick atmosphere with abundant heavy volatiles ($>=$ 50{%} by mass of atmosphere) but that needs not be carbon rich. Our reasoning relies upon cumulative evidence from the reported C II detection, the nondetection of H I atoms in a past transit, modeling of the planets interior, and the assumption that the atmosphere, having survived the most active phases of its Sun-like host star, will survive another 0.2-2 Gyr. Depending on the current mass of atmosphere, {pi} Men c may still transition into a bare rocky core. Our findings confirm the hypothesized compositional diversity of small exoplanets, and represent a milestone toward understanding the planets formation and evolution paths through the investigation of their extended atmospheres.



rate research

Read More

Aims: We aim at constraining the conditions of the wind and high-energy emission of the host star reproducing the non-detection of Ly$alpha$ planetary absorption. Methods: We model the escaping planetary atmosphere, the stellar wind, and their interaction employing a multi-fluid, three-dimensional hydrodynamic code. We assume a planetary atmosphere composed of hydrogen and helium. We run models varying the stellar high-energy emission and stellar mass-loss rate, further computing for each case the Ly$alpha$ synthetic planetary atmospheric absorption and comparing it with the observations. Results: We find that a non-detection of Ly$alpha$ in absorption employing the stellar high-energy emission estimated from far-ultraviolet and X-ray data requires a stellar wind with a stellar mass-loss rate about six times lower than solar. This result is a consequence of the fact that, for $pi$ Men c, detectable Ly$alpha$ absorption can be caused exclusively by energetic neutral atoms, which become more abundant with increasing the velocity and/or the density of the stellar wind. By considering, instead, that the star has a solar-like wind, the non-detection requires a stellar ionising radiation about four times higher than estimated. This is because, despite the fact that a stronger stellar high-energy emission ionises hydrogen more rapidly, it also increases the upper atmosphere heating and expansion, pushing the interaction region with the stellar wind farther away from the planet, where the planet atmospheric density that remains neutral becomes smaller and the production of energetic neutral atoms less efficient. Conclusions: Comparing the results of our grid of models with what is expected and estimated for the stellar wind and high-energy emission, respectively, we support the idea that the atmosphere of $pi$ Men c is likely not hydrogen-dominated.
We observed the transiting super-Earth exoplanet GJ1214b using Warm Spitzer at 4.5 microns wavelength during a 20-day quasi-continuous sequence in May 2011. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a re-analysis of previous transit observations by Desert et al. (2011). In total, we analyse 14 transits of GJ1214b at 4.5 microns, 3 transits at 3.6 microns, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe & Burrows (2012). Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke & Seager (2012) and Howe & Burrows (2012) using a chi-squared analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe & Burrows (2012) tholin-haze model remains the best fit, even when systematic differences among observers are considered.
We report the analysis of two new spectroscopic observations of the super-Earth 55 Cancri e, in the near infrared, obtained with the WFC3 camera onboard the HST. 55 Cancri e orbits so close to its parent star, that temperatures much higher than 2000 K are expected on its surface. Given the brightness of 55 Cancri, the observations were obtained in scanning mode, adopting a very long scanning length and a very high scanning speed. We use our specialized pipeline to take into account systematics introduced by these observational parameters when coupled with the geometrical distortions of the instrument. We measure the transit depth per wavelength channel with an average relative uncertainty of 22 ppm per visit and find modulations that depart from a straight line model with a 6$sigma$ confidence level. These results suggest that 55 Cancri e is surrounded by an atmosphere, which is probably hydrogen-rich. Our fully Bayesian spectral retrieval code, T-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 $mu$m. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we discuss here the implications of such result. Our chemical model, developed with combustion specialists, indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio. This result suggests this super-Earth is a carbon-rich environment even more exotic than previously thought.
The bright star $pi$ Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the ESOs Very-Large Telescope (VLT). The star hosts a multi-planet system (a transiting 4 M$_oplus$ planet at $sim$0.07 au, and a sub-stellar companion on a $sim$2100-day eccentric orbit) which is particularly appealing for a precise multi-technique characterization. With the new ESPRESSO observations, that cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of new photometric transits of $pi$ Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. We analyse the enlarged spectroscopic and photometric datasets and compare the results to those in the literature. We further characterize the system by means of absolute astrometry with Hipparcos and Gaia. We used the spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. We present a precise characterization of the planetary system around $pi$ Men. The ESPRESSO radial velocities alone (with typical uncertainty of 10 cm/s) allow for a precise retrieval of the Doppler signal induced by $pi$ Men c. The residuals show an RMS of 1.2 m/s, and we can exclude companions with a minimum mass less than $sim$2 M$_oplus$ within the orbit of $pi$ Men c). We improve the ephemeris of $pi$ Men c using 18 additional TESS transits, and in combination with the astrometric measurements, we determine the inclination of the orbital plane of $pi$ Men b with high precision ($i_{b}=45.8^{+1.4}_{-1.1}$ deg). This leads to the precise measurement of its absolute mass $m_{b}=14.1^{+0.5}_{-0.4}$ M$_{Jup}$, and shows that the planetary orbital planes are highly misaligned.
We report the detection of a transiting planet around $pi$ Mensae (HD 39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The solar-type host star is unusually bright (V=5.7) and was already known to host a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered planet has a size of $2.04pm 0.05$ $R_oplus$ and an orbital period of 6.27 days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays a 6.27-day periodicity, confirming the existence of the planet and leading to a mass determination of $4.82pm 0.85$ $M_oplus$. The stars proximity and brightness will facilitate further investigations, such as atmospheric spectroscopy, asteroseismology, the Rossiter--McLaughlin effect, astrometry, and direct imaging.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا