No Arabic abstract
After inflation the Universe presumably undergoes a phase of reheating which in effect starts the thermal big bang cosmology. However, so far we have very little direct experimental or observational evidence of this important phase of the Universe. In this letter, we argue that measuring the spectrum of freely propagating relativistic particles, i.e. dark radiation, produced during reheating may provide us with powerful information on the reheating phase. To demonstrate this possibility we consider a situation where the dark radiation is produced in the decays of heavy, non-relativistic particles. We show that the spectrum crucially depends on whether the heavy particle once dominated the Universe or not. Characteristic features caused by the dependence on the number of the relativistic degrees of freedom may even allow to infer the temperature when the decay of the heavy particle occurred.
We exploit the complementarity among supersymmetry, inflation, axions, Big Bang Nucleosynthesis (BBN) and Cosmic Microwave Background Radiation (CMB) to constrain supersymmetric axion models in the light of the recent Planck and BICEP results. In particular, we derive BBN bounds coming from altering the light element abundances by taking into account hadronic and electromagnetic energy injection, and CMB constraints from black-body spectrum distortion. Lastly, we outline the viable versus excluded region of these supersymetric models that might account for the mild dark radiation observed.
Sterile neutrinos at the eV scale have long been studied in the context of anomalies in short baseline neutrino experiments. Their cosmology can be made compatible with our understanding of the early Universe provided the sterile neutrino sector enjoys a nontrivial dynamics with exotic interactions, possibly providing a link to the Dark Matter (DM) puzzle. Interactions between DM and neutrinos have also been proposed to address the long-standing missing satellites problem in the field of large scale structure formation. Motivated by these considerations, in this paper we discuss realistic scenarios with light steriles coupled to DM. We point out that within this framework active neutrinos acquire an effective coupling to DM that manifests itself as a new matter potential in the propagation within a medium of asymmetric DM. Assuming that at least a small fraction of asymmetric DM has been captured by the Sun, we show that a sizable region of the parameter space of these scenarios can be probed by solar neutrino experiments, especially in the regime of small couplings and light mediators where all other probes become inefficient. In the latter regime these scenarios behave as familiar $3+1$ models in all channels except for solar data, where a Solar Dark MSW effect takes place. Solar Dark MSW is characterized by modifications of the most energetic $^8$B and CNO neutrinos, whereas the other fluxes remain largely unaffected.
Usually information from early eras such as reheating is hard to come by. In this paper we argue that, given the right circumstances, right-handed sterile neutrinos decaying to left-handed active ones at relatively late times can carry information from reheating by propagating freely over the thermal history. For not too small mixing angles, suitable right-handed neutrino masses are around ${cal O}$(MeV-GeV). We identify the typical spectra and argue that they provide information on the ratio of the inflaton mass to the reheating temperature. This primordial neutrino signal can be strong enough that it can be detected in IceCube. More speculatively, for a reheating temperature and inflaton mass satisfying $T_R={cal O}(1-100), {rm MeV}$, and $m_phi={cal O}(10^{16-19}),$GeV they may even explain the observed PeV events. Also more general relativistic dark particles can play the role of such messengers, potentially not only allowing for the PeV events but also alleviating the $H_0$-tension .
Cosmological models with a dynamical dark energy field typically lead to a modified propagation of gravitational waves via an effectively time-varying gravitational coupling $G(t)$. The local variation of this coupling between the time of emission and detection can be probed with standard sirens. Here we discuss the role that Lunar Laser Ranging (LLR) and binary pulsar constraints play in the prospects of constraining $G(t)$ with standard sirens. In particular, we argue that LLR constrains the matter-matter gravitational coupling $G_N(t)$, whereas binary pulsars and standard sirens constrain the quadratic kinetic gravity self-interaction $G_{gw}(t)$. Generically, these two couplings could be different in alternative cosmological models, in which case LLR constraints are irrelevant for standard sirens. We use the Hulse-Taylor pulsar data and show that observations are highly insensitive to time variations of $G_{gw}(t)$ yet highly sensitive to $G_N(t)$. We thus conclude that future gravitational waves data will become the best probe to test $G_{gw}(t)$, and will hence provide novel constraints on dynamical dark energy models.
We perform a systematic analysis of dark matter production during post-inflationary reheating. Following the period of exponential expansion, the inflaton begins a period of damped oscillations as it decays. These oscillations and the evolution of temperature of the thermalized decay products depend on the shape of the inflaton potential $V(Phi)$. We consider potentials of the form $Phi^k$. Standard matter-dominated oscillations occur for $k=2$. In general, the production of dark matter may depend on either (or both) the maximum temperature after inflation, or the reheating temperature, where the latter is defined when the Universe becomes radiation dominated. We show that dark matter production is sensitive to the inflaton potential and depends heavily on the maximum temperature when $k>2$. We also consider the production of dark matter with masses larger than the reheating temperature.