Do you want to publish a course? Click here

A comparative accuracy and convergence study of eigenerosion and phase-field models of fracture

84   0   0.0 ( 0 )
 Added by Kerstin Weinberg
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We compare the accuracy, convergence rate and computational cost of eigenerosion (EE) and phase-field (PF) methods. For purposes of comparison, we specifically consider the standard test case of a center-crack panel loaded in biaxial tension and assess the convergence of the energy error as the length scale parameter and mesh size tend to zero simultaneously. The panel is discretized by means of a regular mesh consisting of standard bilinear or Q1 elements. The exact stresses from the known analytical linear elastic solution are applied to the boundary. All element integrals over the interior and the boundary of the domain are evaluated exactly using the symbolic computation program Mathematica. When the EE inelastic energy is enhanced by means of Richardson extrapolation, EE is found to converge at twice the rate of PF and to exhibit much better accuracy. In addition, EE affords a one-order-of-magnitude computational speed-up over PF.



rate research

Read More

We consider a phase-field fracture propagation model, which consists of two (nonlinear) coupled partial differential equations. The first equation describes the displacement evolution, and the second is a smoothed indicator variable, describing the crack position. We propose an iterative scheme, the so-called $L$-scheme, with a dynamic update of the stabilization parameters during the iterations. Our algorithmic improvements are substantiated with two numerical tests. The dynamic adjustments of the stabilization parameters lead to a significant reduction of iteration numbers in comparison to constant stabilization values.
The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase field fracture method. The nonlocal governing equations are expressed as integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate .
163 - Xiaofeng Xu , Lian Zhang , Yin Shi 2021
Modeling the microstructure evolution of a material embedded in a device often involves integral boundary conditions. Here we propose a modified Nitsches method to solve the Poisson equation with an integral boundary condition, which is coupled to phase-field equations of the microstructure evolution of a strongly correlated material undergoing metal-insulator transitions. Our numerical experiments demonstrate that the proposed method achieves optimal convergence rate while the rate of convergence of the conventional Lagrange multiplier method is not optimal. Furthermore, the linear system derived from the modified Nitsches method can be solved by an iterative solver with algebraic multigrid preconditioning. The modified Nitsches method can be applied to other physical boundary conditions mathematically similar to this electric integral boundary condition.
116 - Zhiyan Ding , Qin Li 2019
Ensemble Kalman Sampler (EKS) is a method to find approximately $i.i.d.$ samples from a target distribution. As of today, why the algorithm works and how it converges is mostly unknown. The continuous version of the algorithm is a set of coupled stochastic differential equations (SDEs). In this paper, we prove the wellposedness of the SDE system, justify its mean-field limit is a Fokker-Planck equation, whose long time equilibrium is the target distribution. We further demonstrate that the convergence rate is near-optimal ($J^{-1/2}$, with $J$ being the number of particles). These results, combined with the in-time convergence of the Fokker-Planck equation to its equilibrium, justify the validity of EKS, and provide the convergence rate as a sampling method.
93 - Fan Fei , Jinhyun Choo 2020
Geologic shear fractures such as faults and slip surfaces involve marked friction along the discontinuities as they are subjected to significant confining pressures. This friction plays a critical role in the growth of these shear fractures, as revealed by the fracture mechanics theory of Palmer and Rice decades ago. In this paper, we develop a novel phase-field model of shear fracture in pressure-sensitive geomaterials, honoring the role of friction in the fracture propagation mechanism. Building on a recently proposed phase-field method for frictional interfaces, we formulate a set of governing equations for different contact conditions (or lack thereof) in which frictional energy dissipation emerges in the crack driving force during slip. We then derive the degradation function and the threshold fracture energy of the phase-field model such that the stress-strain behavior is insensitive to the length parameter for phase-field regularization. This derivation procedure extends a methodology used in recent phase-field models of cohesive tensile fracture to shear fracture in frictional materials in which peak and residual strengths coexist and evolve by confining pressure. The resulting phase-field formulation is demonstrably consistent with the theory of Palmer and Rice. Numerical examples showcase that the proposed phase-field model is a physically sound and numerically efficient method for simulating shear fracture processes in geologic materials, such as faulting and slip surface growth.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا