No Arabic abstract
I searched for the ground state 6.8 and 9.2 GHz hyperfine transitions of rubidium and cesium toward M- and L-dwarfs that show Rb and Cs optical resonance lines. The optical lines can pump the hyperfine transitions, potentially forming masers. These spin-flip transitions of Rb and Cs are the principal transitions used in atomic clocks (the $^{133}$Cs hyperfine transition defines the second). If they are detected in stellar atmospheres, these transitions would provide exceptionally precise clocks that can be used as accelerometers, as exoplanet detectors, as probes of the predictions of general relativity, as probes of light propagation effects, and as a means to do fundamental physics with telescopes. Observations of 21 M- and L-dwarfs, however, show no evidence for Rb or Cs maser action, and a previous survey of giant stars made no Rb maser detections.
In this study, abundances of the neutron-capture elements Rb, Sr, and Zr are derived, for the first time, in a sample of nearby M dwarfs. We focus on stars in the metallicity range -0.5<[Fe/H]<+0.3, an interval poorly explored for Rb abundances in previous analyses. To do this we use high-resolution, high-signal-to-noise-ratio, optical and near-infrared spectra of 57 M dwarfs observed with CARMENES. The resulting [Sr/Fe] and [Zr/Fe] ratios for most M dwarfs are almost constant at about the solar value, and are identical to those found in GK dwarfs of the same metallicity. However, for Rb we find systematic underabundances ([Rb/Fe]<0.0) by a factor two on average. Furthermore, a tendency is found for Rb-but not for other heavy elements (Sr, Zr) -to increase with increasing metallicity such that [Rb/Fe]>0.0 is attained at metallicities higher than solar. These are surprising results, never seen for any other heavy element, and are difficult to understand within the formulation of the s- and r-processes, both contributing sources to the Galactic Rb abundance. We discuss the reliability of these findings for Rb in terms of non-LTE effects, stellar activity, or an anomalous Rb abundance in the Solar System, but no explanation is found. We then interpret the full observed [Rb/Fe] versus [Fe/H] trend within the framework of theoretical predictions from state-of-the-art chemical evolution models for heavy elements, but a simple interpretation is not found either. In particular, the possible secondary behaviour of the [Rb/Fe] ratio at super-solar metallicities would require a much larger production of Rb than currently predicted in AGB stars through the s-process without overproducing Sr and Zr.
The aim of the project is to search for lithium in absorption at 6707.8 Angstroms to constrain the nature and the mass of the brightest low-metallicity L-type dwarfs (refered to as L subdwarfs) identified in large-scale surveys. We obtained low- to intermediate-resolution (R~2500-9000) optical (~560-770 nm) spectra of two mid-L subdwarfs, SDSSJ125637.13-022452.4 (SDSS1256; sdL3.5) and 2MASSJ162620.14+392519.5 (2MASS1626; sdL4) with spectrographs on the European Southern Observatory Very Large Telescope and the Gran Telescopio de Canarias. We report the presence of a feature at the nominal position of the lithium absorption doublet at 6707.8 Angstroms in the spectrum of SDSS1256, with an equivalent width of 66+/-27 Angstroms at 2.4 sigma, which we identify as arising from a CaH molecular transition based on atmosphere models. We do not see any feature at the position of the lithium feature in the spectrum of 2MASS1626. The existence of overlapping molecular absorption sets a confusion detection limit of [Li/H]=-3 for equivalently-typed L subdwarfs. We provided improved radial velocity measurements of -126+/-10 km/s and -239+/-12 km/s for SDSS1256 and 2MASS1626, respectively, as well as revised Galactic orbits. We implemented adjusting factors for the CaH molecule in combination with the NextGen atmosphere models to fit the optical spectrum of SDSS1256 in the 6200-7300 Angstroms range. We also estimate the expected Li abundance from interstellar accretion ([Li/H]=-5), place limits on circumstellar accretion (10^9 g/yr), and discuss the prospects of Li searches in cooler L and T subdwarfs.
Rotation periods from Kepler K2 are combined with projected rotation velocities from the WIYN 3.5-m telescope, to determine projected radii for fast-rotating, low-mass ($0.15 leq M/M_{odot} leq 0.6$) members of the Praesepe cluster. A maximum likelihood analysis that accounts for observational uncertainties, binarity and censored data, yields marginal evidence for radius inflation -- the average radius of these stars is $6pm4$ per cent larger at a given luminosity than predicted by commonly-used evolutionary models. This over-radius is smaller (at 2-sigma confidence) than was found for similar stars in the younger Pleiades using a similar analysis; any decline appears due to changes occurring in higher mass ($>0.25 M_{odot}$) stars. Models incorporating magnetic inhibition of convection predict an over-radius, but do not reproduce this mass dependence unless super-equipartition surface magnetic fields are present at lower masses. Models incorporating flux-blocking by starspots can explain the mass dependence but there is no evidence that spot coverage diminishes between the Pleiades and Praesepe samples to accompany the decline in over-radius. The fastest rotating stars in both Praesepe and the Pleiades are significantly smaller than the slowest rotators for which a projected radius can be measured. This may be a selection effect caused by more efficient angular momentum loss in larger stars leading to their progressive exclusion from the analysed samples. Our analyses assume random spin-axis orientations; any alignment in Praesepe, as suggested by Kovacs (2018), is strongly disfavoured by the broad distribution of projected radii.
We combine 131 new medium-resolution (R~2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5-T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all M6-L7 objects in our sample by measuring equivalent widths (EW) of the K I lines at 1.1692, 1.1778, 1.2529 um, and the 1.2 um FeHJ absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak - at ~L5 and T5 - in K I EW as a function of spectral type. We analyze K I EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6-L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current datasets cannot be used to provide a precise age estimate.
The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census, we have searched $approx$28,000 deg$^2$ using the Pan-STARRS1 and WISE surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances $approx9-130$ pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types of L6-T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9-T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the L/T gap, a deficit of objects with $(J-K)_{rm MKO}approx0.0-0.5$ mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7-T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG members and would help to determine the effective temperature at which young brown dwarfs cross the L/T transition. (Abridged)