Do you want to publish a course? Click here

Magic Conditions for Multiple Rotational States of Bialkali Molecules in Optical Lattices

425   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate magic-wavelength trapping of ultracold bialkali molecules in the vicinity of weak optical transitions from the vibrational ground state of the X$^1Sigma^+$ potential to low-lying rovibrational states of the b$^3Pi_0$ potential, focussing our discussion on the $^{87}$Rb$^{133}$Cs molecule in a magnetic field of $B=181,$G. We show that a frequency window exists between two nearest neighbor vibrational poles in the dynamic polarizability where the trapping potential is near magic for multiple rotational states simultaneously. We show that the addition of a modest DC electric field of $E=0.13,text{kV}/text{cm}$ leads to an exact magic-wavelength trap for the lowest three rotational states at a angular-frequency detuning of $Delta_{v=0} = 2pitimes 218.22$,GHz from the X$^1Sigma^+ (v=0, J=0)rightarrow$ b$^3Pi_0 (v=0, J=1)$ transition. We derive a set of analytical criteria that must be fulfilled to ensure the existence of such magic frequency windows and present an analytic expression for the position of the frequency window in terms of a set of experimentally measurable parameters. These results should inform future experiments requiring long coherence times on multiple rotational transitions in ultracold polar molecules.



rate research

Read More

Sensing local environment through the motional response of small molecules lays the foundation of many fundamental technologies. The information of local viscosity, for example, is contained in the random rotational Brownian motions of molecules. However, detection of the motions is challenging for molecules with sub-nanometer scale or high motional rates. Here we propose and experimentally demonstrate a novel method of detecting fast rotational Brownian motions of small magnetic molecules. With electronic spins as sensors, we are able to detect changes in motional rates, which yield different noise spectra and therefore different relaxation signals of the sensors. As a proof-of-principle demonstration, we experimentally implemented this method to detect the motions of gadolinium (Gd) complex molecules with nitrogen-vacancy (NV) centers in nanodiamonds. With all-optical measurements of the NV centers longitudinal relaxation, we distinguished binary solutions with varying viscosities. Our method paves a new way for detecting fast motions of sub-nanometer sized magnetic molecules with better spatial resolution than conventional optical methods. It also provides a new tool in designing better contrast agents in magnetic resonance imaging.
Qubit coherence times are critical to the performance of any robust quantum computing platform. For quantum information processing using arrays of polar molecules, a key performance parameter is the molecular rotational coherence time. We report a 93(7) ms coherence time for rotational state qubits of laser cooled CaF molecules in optical tweezer traps, over an order of magnitude longer than previous systems. Inhomogeneous broadening due to the differential polarizability between the qubit states is suppressed by tuning the tweezer polarization and applied magnetic field to a magic angle. The coherence time is limited by the residual differential polarizability, implying improvement with further cooling. A single spin-echo pulse is able to extend the coherence time to nearly half a second. The measured coherence times demonstrate the potential of polar molecules as high fidelity qubits.
57 - Eunmi Chae 2020
Diatomic polar molecules are one of the most promising platforms of quantum computing due to their rich internal states and large electric dipole moments. Here, we propose entangling rotational states of adjacent polar molecules via a strong electric dipole-dipole interaction. The splitting of 1.27 kHz between two entangled states is predicted for MgF molecules in an optical tweezer array. The resolution of the entangled states can be achieved in a magic potential for the molecules where the rotational states have the same trap frequencies. The magic potential can be formed by tuning the angle between the molecules quantization axis and the linear polarization of trapping light, so-called magic angle. We calculate the magic angle for MgF molecules in a reasonable experimental condition and obtain that the trap frequencies of the two involved states can be matched within a few 10s of Hz. Establishing entanglement between molecules, our results provide a first step towards quantum computing using diatomic polar molecules.
221 - Z. Lan , A. Celi , W. Lu 2011
We show that multiple layered Dirac cones can emerge in the band structure of properly addressed multicomponent cold fermionic gases in optical lattices. The layered Dirac cones contain multiple copies of massless spin-1/2 Dirac fermions at the {it same}location in momentum space, whose different Fermi velocity can be tuned at will. On-site microwave Raman transitions can further be used to mix the different Dirac species, resulting in either splitting of or preserving the Dirac point (depending on the symmetry of the on-site term). The tunability of the multiple layered Dirac cones allows to simulate a number of fundamental phenomena in modern physics, such as neutrino oscillations and exotic particle dispersions with $Esim p^N $ for arbitrary integer $N$.
We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS$_2$ and I$_2$ as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity -- the angular momentum, transferred from the molecule to the droplet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا