Unusual heat transport of the Kitaev material Na$_2$Co$_2$TeO$_6$: putative quantum spin liquid and low-energy spin excitations


Abstract in English

We studied the field dependent thermal conductivity ($kappa$) of Na$_2$Co$_2$TeO$_6$, a compound considered as the manifestation of the Kitaev model based on the high-spin $d^7$ Co$^{2+}$ ions. We found that in-plane magnetic fields beyond a critical value $B_c approx$~10 T are able to drastically enhance $kappa$ at low temperatures, resulting in a double-peak structure of $kappa(T)$ that closely resembles the behavior of $alpha$-RuCl$_3$. This result suggests that heat transport in Na$_2$Co$_2$TeO$_6$ is primarily phononic, and it is strongly affected by scattering from magnetic excitations that are highly tunable by external fields. Interestingly, for magnetic fields $B // a$ (i.e., along the zigzag direction of the Co-Co bonds), there is an extended field range which separates the long-range magnetic order for $Bleq B_capprox10$ T and the partially spin-polarized gapped high-field phase for $Bgtrsim 12$ T. The low-energy phonon scattering is particularly strong in this field range, consistent with the notion that the system becomes a quantum spin liquid with prominent spin fluctuations down to energies of no more than 2 meV.

Download