Do you want to publish a course? Click here

LOCCNet: a machine learning framework for distributed quantum information processing

73   0   0.0 ( 0 )
 Added by Xin Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Distributed quantum information processing is essential for building quantum networks and enabling more extensive quantum computations. In this regime, several spatially separated parties share a multipartite quantum system, and the most natural set of operations are Local Operations and Classical Communication (LOCC). As a pivotal part in quantum information theory and practice, LOCC has led to many vital protocols such as quantum teleportation. However, designing practical LOCC protocols is challenging due to LOCCs intractable structure and limitations set by near-term quantum devices. Here we introduce LOCCNet, a machine learning framework facilitating protocol design and optimization for distributed quantum information processing tasks. As applications, we explore various quantum information tasks such as entanglement distillation, quantum state discrimination, and quantum channel simulation. We discover novel protocols with evident improvements, in particular, for entanglement distillation with quantum states of interest in quantum information. Our approach opens up new opportunities for exploring entanglement and its applications with machine learning, which will potentially sharpen our understanding of the power and limitations of LOCC.



rate research

Read More

We introduce TensorFlow Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data. This framework offers high-level abstractions for the design and training of both discriminative and generative quantum models under TensorFlow and supports high-performance quantum circuit simulators. We provide an overview of the software architecture and building blocks through several examples and review the theory of hybrid quantum-classical neural networks. We illustrate TFQ functionalities via several basic applications including supervised learning for quantum classification, quantum control, simulating noisy quantum circuits, and quantum approximate optimization. Moreover, we demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning. We hope this framework provides the necessary tools for the quantum computing and machine learning research communities to explore models of both natural and artificial quantum systems, and ultimately discover new quantum algorithms which could potentially yield a quantum advantage.
How to train a machine learning model while keeping the data private and secure? We present CodedPrivateML, a fast and scalable approach to this critical problem. CodedPrivateML keeps both the data and the model information-theoretically private, while allowing efficient parallelization of training across distributed workers. We characterize CodedPrivateMLs privacy threshold and prove its convergence for logistic (and linear) regression. Furthermore, via extensive experiments on Amazon EC2, we demonstrate that CodedPrivateML provides significant speedup over cryptographic approaches based on multi-party computing (MPC).
Neuroevolution, a field that draws inspiration from the evolution of brains in nature, harnesses evolutionary algorithms to construct artificial neural networks. It bears a number of intriguing capabilities that are typically inaccessible to gradient-based approaches, including optimizing neural-network architectures, hyperparameters, and even learning the training rules. In this paper, we introduce a quantum neuroevolution algorithm that autonomously finds near-optimal quantum neural networks for different machine learning tasks. In particular, we establish a one-to-one mapping between quantum circuits and directed graphs, and reduce the problem of finding the appropriate gate sequences to a task of searching suitable paths in the corresponding graph as a Markovian process. We benchmark the effectiveness of the introduced algorithm through concrete examples including classifications of real-life images and symmetry-protected topological states. Our results showcase the vast potential of neuroevolution algorithms in quantum machine learning, which would boost the exploration towards quantum learning supremacy with noisy intermediate-scale quantum devices.
The classification of big data usually requires a mapping onto new data clusters which can then be processed by machine learning algorithms by means of more efficient and feasible linear separators. Recently, Lloyd et al. have advanced the proposal to embed classical data into quantum ones: these live in the more complex Hilbert space where they can get split into linearly separable clusters. Here, we implement these ideas by engineering two different experimental platforms, based on quantum optics and ultra-cold atoms respectively, where we adapt and numerically optimize the quantum embedding protocol by deep learning methods, and test it for some trial classical data. We perform also a similar analysis on the Rigetti superconducting quantum computer. Therefore, we find that the quantum embedding approach successfully works also at the experimental level and, in particular, we show how different platforms could work in a complementary fashion to achieve this task. These studies might pave the way for future investigations on quantum machine learning techniques especially based on hybrid quantum technologies.
When the data is distributed across multiple servers, lowering the communication cost between the servers (or workers) while solving the distributed learning problem is an important problem and is the focus of this paper. In particular, we propose a fast, and communication-efficient decentralized framework to solve the distributed machine learning (DML) problem. The proposed algorithm, Group Alternating Direction Method of Multipliers (GADMM) is based on the Alternating Direction Method of Multipliers (ADMM) framework. The key novelty in GADMM is that it solves the problem in a decentralized topology where at most half of the workers are competing for the limited communication resources at any given time. Moreover, each worker exchanges the locally trained model only with two neighboring workers, thereby training a global model with a lower amount of communication overhead in each exchange. We prove that GADMM converges to the optimal solution for convex loss functions, and numerically show that it converges faster and more communication-efficient than the state-of-the-art communication-efficient algorithms such as the Lazily Aggregated Gradient (LAG) and dual averaging, in linear and logistic regression tasks on synthetic and real datasets. Furthermore, we propose Dynamic GADMM (D-GADMM), a variant of GADMM, and prove its convergence under the time-varying network topology of the workers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا