Limit point buckling of a finite beam on a nonlinear foundation


Abstract in English

In this paper, we consider an imperfect finite beam lying on a nonlinear foundation, whose dimensionless stiffness is reduced from $1$ to $k$ as the beam deflection increases. Periodic equilibrium solutions are found analytically and are in good agreement with a numerical resolution, suggesting that localized buckling does not appear for a finite beam. The equilibrium paths may exhibit a limit point whose existence is related to the imperfection size and the stiffness parameter $k$ through an explicit condition. The limit point decreases with the imperfection size while it increases with the stiffness parameter. We show that the decay/growth rate is sensitive to the restoring force model. The analytical results on the limit load may be of particular interest for engineers in structural mechanics

Download