No Arabic abstract
Virtual meetings are critical for remote work because of the need for synchronous collaboration in the absence of in-person interactions. In-meeting multitasking is closely linked to peoples productivity and wellbeing. However, we currently have limited understanding of multitasking in remote meetings and its potential impact. In this paper, we present what we believe is the most comprehensive study of remote meeting multitasking behavior through an analysis of a large-scale telemetry dataset collected from February to May 2020 of U.S. Microsoft employees and a 715-person diary study. Our results demonstrate that intrinsic meeting characteristics such as size, length, time, and type, significantly correlate with the extent to which people multitask, and multitasking can lead to both positive and negative outcomes. Our findings suggest important best-practice guidelines for remote meetings (e.g., avoid important meetings in the morning) and design implications for productivity tools (e.g., support positive remote multitasking).
Gamification represents an effective way to incentivize user behavior across a number of computing applications. However, despite the fact that physical activity is essential for a healthy lifestyle, surprisingly little is known about how gamification and in particular competitions shape human physical activity. Here we study how competitions affect physical activity. We focus on walking challenges in a mobile activity tracking application where multiple users compete over who takes the most steps over a predefined number of days. We synthesize our findings in a series of game and app design implications. In particular, we analyze nearly 2,500 physical activity competitions over a period of one year capturing more than 800,000 person days of activity tracking. We observe that during walking competitions, the average user increases physical activity by 23%. Furthermore, there are large increases in activity for both men and women across all ages, and weight status, and even for users that were previously fairly inactive. We also find that the composition of participants greatly affects the dynamics of the game. In particular, if highly unequal participants get matched to each other, then competition suffers and the overall effect on the physical activity drops significantly. Furthermore, competitions with an equal mix of both men and women are more effective in increasing the level of activities. We leverage these insights to develop a statistical model to predict whether or not a competition will be particularly engaging with significant accuracy. Our models can serve as a guideline to help design more engaging competitions that lead to most beneficial behavioral changes.
The COVID-19 pandemic has had a wide-ranging impact on information workers such as higher stress levels, increased workloads, new workstreams, and more caregiving responsibilities during lockdown. COVID-19 also caused the overwhelming majority of information workers to rapidly shift to working from home (WFH). The central question this work addresses is: can we isolate the effects of WFH on information workers collaboration activities from all other factors, especially the other effects of COVID-19? This is important because in the future, WFH will likely to be more common than it was prior to the pandemic. We use difference-in-differences (DiD), a causal identification strategy commonly used in the social sciences, to control for unobserved confounding factors and estimate the causal effect of WFH. Our analysis relies on measuring the difference in changes between those who WFH prior to COVID-19 and those who did not. Our preliminary results suggest that on average, people spent more time on collaboration in April (Post WFH mandate) than in February (Pre WFH mandate), but this is primarily due to factors other than WFH, such as lockdowns during the pandemic. The change attributable to WFH specifically is in the opposite direction: less time on collaboration and more focus time. This reversal shows the importance of using causal inference: a simple analysis would have resulted in the wrong conclusion. We further find that the effect of WFH is moderated by individual remote collaboration experience prior to WFH. Meanwhile, the medium for collaboration has also shifted due to WFH: instant messages were used more, whereas scheduled meetings were used less. We discuss design implications -- how future WFH may affect focused work, collaborative work, and creative work.
Transportation mode detection with personal devices has been investigated for over ten years due to its importance in monitoring ones activities, understanding human mobility, and assisting traffic management. However, two main limitations are still preventing it from large-scale deployments: high power consumption, and the lack of high-volume and diverse labeled data. In order to reduce power consumption, existing approaches are sampling using fewer sensors and with lower frequency, which however lead to a lower accuracy. A common way to obtain labeled data is recording the ground truth while collecting data, but such method cannot apply to large-scale deployment due to its inefficiency. To address these issues, we adopt a new low-frequency sampling manner with a hierarchical transportation mode identification algorithm and propose an offline data labeling approach with its manual and automatic implementations. Through a real-world large-scale experiment and comparison with related works, our sampling manner and algorithm are proved to consume much less energy while achieving a competitive accuracy around 85%. The new offline data labeling approach is also validated to be efficient and effective in providing ground truth for model training and testing.
Most work to date on mitigating the COVID-19 pandemic is focused urgently on biomedicine and epidemiology. Yet, pandemic-related policy decisions cannot be made on health information alone. Decisions need to consider the broader impacts on people and their needs. Quantifying human needs across the population is challenging as it requires high geo-temporal granularity, high coverage across the population, and appropriate adjustment for seasonal and other external effects. Here, we propose a computational methodology, building on Maslows hierarchy of needs, that can capture a holistic view of relative changes in needs following the pandemic through a difference-in-differences approach that corrects for seasonality and volume variations. We apply this approach to characterize changes in human needs across physiological, socioeconomic, and psychological realms in the US, based on more than 35 billion search interactions spanning over 36,000 ZIP codes over a period of 14 months. The analyses reveal that the expression of basic human needs has increased exponentially while higher-level aspirations declined during the pandemic in comparison to the pre-pandemic period. In exploring the timing and variations in statewide policies, we find that the durations of shelter-in-place mandates have influenced social and emotional needs significantly. We demonstrate that potential barriers to addressing critical needs, such as support for unemployment and domestic violence, can be identified through web search interactions. Our approach and results suggest that population-scale monitoring of shifts in human needs can inform policies and recovery efforts for current and anticipated needs.
The COVID-19 pandemic has impacted the way that software development teams onboard new hires. Previously, most software developers worked in physical offices and new hires onboarded to their teams in the physical office, following a standard onboarding process. However, when companies transitioned employees to work from home due to the pandemic, there was little to no time to develop new onboarding procedures. In this paper, we present a survey of 267 new hires at Microsoft that onboarded to software development teams during the pandemic. We explored their remote onboarding process, including the challenges that the new hires encountered and their social connectedness with their teams. We found that most developers onboarded remotely and never had an opportunity to meet their teammates in person. This leads to one of the biggest challenges faced by these new hires, building a strong social connection with their team. We use these results to provide recommendations for onboarding remote hires.