Do you want to publish a course? Click here

Wave Dark Matter

116   0   0.0 ( 0 )
 Added by Lam Hui
 Publication date 2021
  fields Physics
and research's language is English
 Authors Lam Hui




Ask ChatGPT about the research

We review the physics and phenomenology of wave dark matter: a bosonic dark matter candidate lighter than about 30 eV. Such particles have a de Broglie wavelength exceeding the average inter-particle separation in a galaxy like the Milky Way, and are well described as classical waves. We outline the particle physics motivations for them, including the QCD axion and ultra-light axion-like-particles such as fuzzy dark matter. The wave nature of the dark matter implies a rich phenomenology: (1) Wave interference leads to order unity density fluctuations on de Broglie scale. A manifestation is vortices where the density vanishes and around which the velocity circulates. There is one vortex ring per de Broglie volume on average. (2) For sufficiently low masses, soliton condensation occurs at centers of halos. The soliton oscillates and random walks, another manifestation of wave interference. The halo/subhalo abundance is suppressed at small masses, but the precise prediction from numerical wave simulations remains to be determined. (3) For ultra-light ~$10^{-22}$ eV dark matter, the wave interference substructures can be probed by tidal streams/gravitational lensing. The signal can be distinguished from that due to subhalos by the dependence on stream orbital radius/image separation. (4) Axion detection experiments are sensitive to interference substructures for moderately light masses. The stochastic nature of the waves affects the interpretation of experiments and motivates the measurement of correlation functions. Current constraints and open questions, covering detection experiments and cosmological/galactic/black-hole observations, are discussed.



rate research

Read More

The black hole merging rates inferred after the gravitational-wave detection by Advanced LIGO/VIRGO and the relatively high mass of the progenitors are consistent with models of dark matter made of massive primordial black holes (PBH). PBH binaries emit gravitational waves in a broad range of frequencies that will be probed by future space interferometers (LISA) and pulsar timing arrays (PTA). The amplitude of the stochastic gravitational-wave background expected for PBH dark matter is calculated taking into account various effects such as initial eccentricity of binaries, PBH velocities, mass distribution and clustering. It allows a detection by the LISA space interferometer, and possibly by the PTA of the SKA radio-telescope. Interestingly, one can distinguish this background from the one of non-primordial massive binaries through a specific frequency dependence, resulting from the maximal impact parameter of binaries formed by PBH capture, depending on the PBH velocity distribution and their clustering properties. Moreover, we find that the gravitational wave spectrum is boosted by the width of PBH mass distribution, compared with that of the monochromatic spectrum. The current PTA constraints already rule out broad-mass PBH models covering more than three decades of masses, but evading the microlensing and CMB constraints due to clustering.
We present a wave generalization of the classic Schwarzschild method for constructing self-consistent halos -- such a halo consists of a suitable superposition of waves instead of particle orbits, chosen to yield a desired mean density profile. As an illustration, the method is applied to spherically symmetric halos. We derive an analytic relation between the particle distribution function and the wave superposition amplitudes, and show how it simplifies in the high energy (WKB) limit. We verify the stability of such constructed halos by numerically evolving the Schrodinger-Poisson system. The algorithm provides an efficient and accurate way to simulate the time-dependent halo substructures from wave interference. We use this method to construct halos with a variety of density profiles, all of which have a core from the ground-state wave function, though the core-halo relation need not be the standard one.
We consider a dark matter halo (DMH) of a spherical galaxy as a Bose-Einstein condensate of the ultra-light axions interacting with the baryonic matter. In the mean-field limit, we have derived the integro-differential equation of the Hartree-Fock type for the spherically symmetrical wave function of the DMH component. This equation includes two independent dimensionless parameters: (i) b{eta}- the ratio of baryon and axion total mases and (ii) {xi}- the ratio of characteristic baryon and axion spatial parameters. We extended our dissipation algorithm for studying numerically the ground state of the axion halo in the gravitational field produced by the baryonic component. We calculated the characteristic size, Xc, of DMH as a function of b{eta} and {xi} and obtained an analytical approximation for Xc.
In a galactic halo like the Milky Way, bosonic dark matter particles lighter than about $30$ eV have a de Broglie wavelength larger than the average inter-particle separation and are therefore well described as a set of classical waves. This applies to, for instance, the QCD axion as well as to lighter axion-like particles such as fuzzy dark matter. We show that the interference of waves inside a halo inevitably leads to vortices, locations where chance destructive interference takes the density to zero. The phase of the wavefunction has non-trivial winding around these points. This can be interpreted as a non-zero velocity circulation, so that vortices are sites where the fluid velocity has a non-vanishing curl. Using analytic arguments and numerical simulations, we study the properties of vortices and show they have a number of universal features: (1) In three spatial dimensions, the generic defects take the form of vortex rings. (2) On average there is about one vortex ring per de Broglie volume and (3) generically only single winding ($pm 1$) vortices are found in a realistic halo. (4) The density near a vortex scales as $r^2$ while the velocity goes as $1/r$, where $r$ is the distance to vortex. (5) A vortex segment moves at a velocity inversely proportional to its curvature scale so that smaller vortex rings move faster, allowing momentary motion exceeding escape velocity. We discuss observational/experimental signatures from vortices and, more broadly, wave interference. In the ultra-light regime, gravitational lensing by interference substructures leads to flux anomalies of $5-10 %$ in strongly lensed systems. For QCD axions, vortices lead to a diminished signal in some detection experiments but not in others. We advocate the measurement of correlation functions by axion detection experiments as a way to probe and capitalize on the expected interference substructures.
Seven observations point towards the existence of primordial black holes (PBH), constituting the whole or an important fraction of the dark matter in the Universe: the mass and spin of black holes detected by Advanced LIGO/VIRGO, the detection of micro-lensing events of distant quasars and stars in M31, the non-detection of ultra-faint dwarf satellite galaxies with radius below 15 parsecs, evidences for core galactic dark matter profiles, the correlation between X-ray and infrared cosmic backgrounds, and the existence of super-massive black holes very early in the Universes history. Some of these hints are newly identified and they are all intriguingly compatible with the re-constructed broad PBH mass distribution from LIGO events, peaking on PBH mass $m_{rm PBH} approx 3 M_odot$ and passing all other constraints on PBH abundances. PBH dark matter also provides a new mechanism to explain the mass-to-light ratios of dwarf galaxies, including the recent detection of a diffuse galaxy not dominated by dark matter. Finally we conjecture that between 0.1% and 1% of the events detected by LIGO will involve a PBH with a mass below the Chandrasekhar mass, which would unambiguously prove the existence of PBH.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا