Do you want to publish a course? Click here

Tractable higher-order under-approximating AE extensions for non-linear systems

56   0   0.0 ( 0 )
 Added by Sylvie Putot
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider the problem of under and over-approximating the image of general vector-valued functions over bounded sets, and apply the proposed solution to the estimation of reachable sets of uncertain non-linear discrete-time dynamical systems. Such a combination of under and over-approximations is very valuable for the verification of properties of embedded and cyber-physical controlled systems. Over-approximations prove properties correct, while under-approximations can be used for falsification. Coupled, they provide a measure of the conservatism of the analysis. This work introduces a general framework relying on computations of robust ranges of vector-valued functions. This framework allows us to extend for under-approximation many precision refinements that are classically used for over-approximations, such as affine approximations, Taylor models, quadrature formulae and preconditioning methods. We end by evaluating the efficiency and precision of our approach, focusing on the application to the analysis of discrete-time dynamical systems with inputs and disturbances, on different examples from the literature.



rate research

Read More

This paper presents a control strategy based on time-varying fixed-time convergent higher order control barrier functions for a class of leader-follower multi-agent systems under signal temporal logic (STL) tasks. Each agent is assigned a local STL task which may be dependent on the behavior of agents involved in other tasks. In each local task, one agent called the leader has knowledge on the associated tasks and controls the performance of the subgroup involved agents. Our approach finds a robust solution to guarantee the fixed-time satisfaction of STL tasks in a least violating way and independent of the agents initial conditions. In particular, the robust performance of the task satisfaction is based on the knowledge of the leader from the followers and can be adjusted in a user-specified way.
93 - Liren Yang , Necmiye Ozay 2021
Zonotopes are widely used for over-approximating forward reachable sets of uncertain linear systems. In this paper, we use zonotopes to achieve more scalable algorithms that under-approximate backward reachable sets for uncertain linear systems. The main difference is that the backward reachability analysis is a two-player game and involves Minkowski difference operations, but zonotopes are not closed under such operations. We under-approximate this Minkowski difference with a zonotope, which can be obtained by solving a linear optimization problem. We further develop an efficient zonotope order reduction technique to bound the complexity of the obtained zonotopic under-approximations. The proposed approach is evaluated against existing approaches using randomly generated instances, and illustrated with an aircraft position control system.
Iterative trajectory optimization techniques for non-linear dynamical systems are among the most powerful and sample-efficient methods of model-based reinforcement learning and approximate optimal control. By leveraging time-variant local linear-quadratic approximations of system dynamics and reward, such methods can find both a target-optimal trajectory and time-variant optimal feedback controllers. However, the local linear-quadratic assumptions are a major source of optimization bias that leads to catastrophic greedy updates, raising the issue of proper regularization. Moreover, the approximate models disregard for any physical state-action limits of the system causes further aggravation of the problem, as the optimization moves towards unreachable areas of the state-action space. In this paper, we address the issue of constrained systems in the scenario of online-fitted stochastic linear dynamics. We propose modeling state and action physical limits as probabilistic chance constraints linear in both state and action and introduce a new trajectory optimization technique that integrates these probabilistic constraints by optimizing a relaxed quadratic program. Our empirical evaluations show a significant improvement in learning robustness, which enables our approach to perform more effective updates and avoid premature convergence observed in state-of-the-art algorithms.
The identification of anomalies is a critical component of operating complex, and possibly large-scale and geo-graphically distributed cyber-physical systems. While designing anomaly detectors, it is common to assume Gaussian noise models to maintain tractability; however, this assumption can lead to the actual false alarm rate being significantly higher than expected. Here we design a distributionally robust threshold of detection using finite and fixed higher-order moments of the detection measure data such that it guarantees the actual false alarm rate to be upper bounded by the desired one. Further, we bound the states reachable through the action of a stealthy attack and identify the trade-off between this impact of attacks that cannot be detected and the worst-case false alarm rate. Through numerical experiments, we illustrate how knowledge of higher-order moments results in a tightened threshold, thereby restricting an attackers potential impact.
The design of provably correct controllers for continuous-state stochastic systems crucially depends on approximate finite-state abstractions and their accuracy quantification. For this quantification, one generally uses approximate stochastic simulation relations, whose constant precision limits the achievable guarantees on the control design. This limitation especially affects higher dimensional stochastic systems and complex formal specifications. This work allows for variable precision by defining a simulation relation that contains multiple precision layers. For bi-layered simulation relations, we develop a robust dynamic programming approach yielding a lower bound on the satisfaction probability of temporal logic specifications. We illustrate the benefit of bi-layered simulation relations for linear stochastic systems in an example.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا