No Arabic abstract
The phenomenon of quantum entanglement marks one of the furthest departures from classical physics and is indispensable for quantum information processing. Despite its fundamental importance, the distribution of entanglement over long distances trough photons is unfortunately hindered by unavoidable decoherence effects. Entanglement distillation is a means of restoring the quality of such diluted entanglement by concentrating it into a pair of qubits. Conventionally, this would be done by distributing multiple photon pairs and distilling the entanglement into a single pair. Here, we turn around this paradigm by utilising pairs of single photons entangled in multiple degrees of freedom. Specifically, we make use of the polarisation and the energy-time domain of photons, both of which are extensively field-tested. We experimentally chart the domain of distillable states and achieve relative fidelity gains up to 13.8 %. Compared to the two-copy scheme, the distillation rate of our single-copy scheme is several orders of magnitude higher, paving the way towards high-capacity and noise-resilient quantum networks.
Entanglement shared among multiple parties presents complex challenges for the characterisation of different types of entanglement. One of the most basic insights is the fact that some mixed states can feature entanglement across every possible cut of a multipartite system, yet can be produced via a mixture of partially separable states. To distinguish states that genuinely cannot be produced from mixing partially separable states, the term genuine multipartite entanglement was coined. All these considerations originate in a paradigm where only a single copy of the state is distributed and locally acted upon. In contrast, advances in quantum technologies prompt the question of how this picture changes when multiple copies of the same state become locally accessible. Here we show that multiple copies unlock genuine multipartite entanglement from partially separable states, even from undistillable ensembles, and even more than two copies can be required to observe this effect. With these findings, we characterise the notion of partial separability in the paradigm of multiple copies and conjecture a strict hierarchy of activatable states and an asymptotic collapse of hierarchy.
Entanglement, one of the central mysteries of quantum mechanics, plays an essential role in numerous applications of quantum information theory. A natural question of both theoretical and experimental importance is whether universal entanglement detection is possible without full state tomography. In this work, we prove a no-go theorem that rules out this possibility for any non-adaptive schemes that employ single-copy measurements only. We also examine in detail a previously implemented experiment, which claimed to detect entanglement of two-qubit states via adaptive single-copy measurements without full state tomography. By performing the experiment and analyzing the data, we demonstrate that the information gathered is indeed sufficient to reconstruct the state. These results reveal a fundamental limit for single-copy measurements in entanglement detection, and provides a general framework to study the detection of other interesting properties of quantum states, such as the positivity of partial transpose and the $k$-symmetric extendibility.
We report an experiment in which two-photon interference occurs between degenerate single photons that never meet. The two photons travel in opposite directions through our fibre-optic interferometer and interference occurs when the photons reach two different, spatially separated, 2-by-2 couplers at the same time. We show that this experiment is analogous to the conventional Franson-type entanglement experiment where the photons are entangled in position and time. We measure wavefunction overlaps for the two photons as high as 94 $pm$ 3%.
The goal of entanglement distillation is to turn a large number of weakly entangled states into a smaller number of highly entangled ones. Practical entanglement distillation schemes offer a tradeoff between the fidelity to the target state, and the probability of successful distillation. Exploiting such tradeoffs is of interest in the design of quantum repeater protocols. Here, we present a number of methods to assess and optimize entanglement distillation schemes. We start by giving a numerical method to compute upper bounds on the maximum achievable fidelity for a desired probability of success. We show that this method performs well for many known examples by comparing it to well-known distillation protocols. This allows us to show optimality for many well-known distillation protocols for specific states of interest. As an example, we analytically prove optimality of the distillation protocol utilized within the Extreme Photon Loss (EPL) entanglement generation scheme, even in the asymptotic limit. We proceed to present a numerical method that can improve an existing distillation scheme for a given input state, and we present an example for which this method finds an optimal distillation protocol. An implementation of our numerical methods is available as a Julia package.
We provide a detailed theoretical analysis of multiple copy purification and distillation protocols for phase diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semi-analytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.