No Arabic abstract
Different retail and e-commerce companies are facing the challenge of assembling large numbers of time-critical picking orders that include both single-line and multi-line orders. To reduce unproductive picker working time as in traditional picker-to-parts warehousing systems, different solutions are proposed in the literature and in practice. For example, in a mixed-shelves storage policy, items of the same stock keeping unit are spread over several shelves in a warehouse; or automated guided vehicles (AGVs) are used to transport the picked items from the storage area to packing stations instead of human pickers. This is the first paper to combine both solutions, creating what we call AGV-assisted mixed-shelves picking systems. We model the new integrated order batching and routing problem in such systems as an extended multi-depot vehicle routing problem with both three-index and two-commodity network flow formulations. Due to the complexity of the integrated problem, we develop a novel variable neighborhood search algorithm to solve the integrated problem more efficiently. We test our methods with different sizes of instances, and conclude that the mixed-shelves storage policy is more suitable than the usual storage policy in AGV-assisted mixed-shelves systems for both single-line and multi-line orders (saving up to 67% on driving distances for AGVs). Our variable neighborhood search algorithm provides close-to-optimal solutions within an acceptable computational time.
Quantum annealing (QA) is a quantum computing algorithm that works on the principle of Adiabatic Quantum Computation (AQC), and it has shown significant computational advantages in solving combinatorial optimization problems such as vehicle routing problems (VRP) when compared to classical algorithms. This paper presents a QA approach for solving a variant VRP known as multi-depot capacitated vehicle routing problem (MDCVRP). This is an NP-hard optimization problem with real-world applications in the fields of transportation, logistics, and supply chain management. We consider heterogeneous depots and vehicles with different capacities. Given a set of heterogeneous depots, the number of vehicles in each depot, heterogeneous depot/vehicle capacities, and a set of spatially distributed customer locations, the MDCVRP attempts to identify routes of various vehicles satisfying the capacity constraints such as that all the customers are served. We model MDCVRP as a quadratic unconstrained binary optimization (QUBO) problem, which minimizes the overall distance traveled by all the vehicles across all depots given the capacity constraints. Furthermore, we formulate a QUBO model for dynamic version of MDCVRP known as D-MDCVRP, which involves dynamic rerouting of vehicles to real-time customer requests. We discuss the problem complexity and a solution approach to solving MDCVRP and D-MDCVRP on quantum annealing hardware from D-Wave.
Mixed Integer Programming (MIP) solvers rely on an array of sophisticated heuristics developed with decades of research to solve large-scale MIP instances encountered in practice. Machine learning offers to automatically construct better heuristics from data by exploiting shared structure among instances in the data. This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one. Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP. Neural Diving learns a deep neural network to generate multiple partial assignments for its integer variables, and the resulting smaller MIPs for un-assigned variables are solved with SCIP to construct high quality joint assignments. Neural Branching learns a deep neural network to make variable selection decisions in branch-and-bound to bound the objective value gap with a small tree. This is done by imitating a new variant of Full Strong Branching we propose that scales to large instances using GPUs. We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each. Most instances in all the datasets combined have $10^3-10^6$ variables and constraints after presolve, which is significantly larger than previous learning approaches. Comparing solvers with respect to primal-dual gap averaged over a held-out set of instances, the learning-augmented SCIP is 2x to 10x better on all datasets except one on which it is $10^5$x better, at large time limits. To the best of our knowledge, ours is the first learning approach to demonstrate such large improvements over SCIP on both large-scale real-world application datasets and MIPLIB.
Autonomous driving at intersections is one of the most complicated and accident-prone traffic scenarios, especially with mixed traffic participants such as vehicles, bicycles and pedestrians. The driving policy should make safe decisions to handle the dynamic traffic conditions and meet the requirements of on-board computation. However, most of the current researches focuses on simplified intersections considering only the surrounding vehicles and idealized traffic lights. This paper improves the integrated decision and control framework and develops a learning-based algorithm to deal with complex intersections with mixed traffic flows, which can not only take account of realistic characteristics of traffic lights, but also learn a safe policy under different safety constraints. We first consider different velocity models for green and red lights in the training process and use a finite state machine to handle different modes of light transformation. Then we design different types of distance constraints for vehicles, traffic lights, pedestrians, bicycles respectively and formulize the constrained optimal control problems (OCPs) to be optimized. Finally, reinforcement learning (RL) with value and policy networks is adopted to solve the series of OCPs. In order to verify the safety and efficiency of the proposed method, we design a multi-lane intersection with the existence of large-scale mixed traffic participants and set practical traffic light phases. The simulation results indicate that the trained decision and control policy can well balance safety and tracking performance. Compared with model predictive control (MPC), the computational time is three orders of magnitude lower.
We consider the classic School Bus Routing Problem (SBRP) with a multi modal generalization, where students are either picked up by a fleet of school buses or transported by an alternate transportation mode, subject to a set of constraints. The constraints that are typically imposed for school buses are a maximum fleet size, a maximum walking distance to a pickup point and a maximum commute time for each student. This is a special case of the Vehicle Routing Problem (VRP) with a common destination. We propose a decomposition approach for solving this problem based on the existing notion of a shareability network, which has been used recently in the context of dynamic ridepooling problems. Moreover, we simplify the problem by introducing the connection between the SBRP and the weighted set covering problem (WSCP). To scale this method to large-scale problem instances, we propose i) a node compression method for the shareability network based decomposition approach, and ii) heuristic-based edge compression techniques that perform well in practice. We show that the compressed problem leads to an Integer Linear Programming (ILP) of reduced dimensionality that can be solved efficiently using off-the-shelf ILP solvers. Numerical experiments on small-scale, large-scale and benchmark networks are used to evaluate the performance of our approach and compare it to existing large-scale SBRP solving techniques.
In task allocation for real-time domains, such as disaster response, a limited number of agents is deployed across a large area to carry out numerous tasks, each with its prerequisites, profit, time window and workload. To maximize profits while minimizing time penalties, agents need to cooperate by forming, disbanding and reforming coalitions. In this paper, we name this problem Multi-Agent Routing and Scheduling through Coalition formation (MARSC) and show that it generalizes the important Team Orienteering Problem with Time Windows. We propose a binary integer program and an anytime and scalable heuristic to solve it. Using public London Fire Brigade records, we create a dataset with 347588 tasks and a test framework that simulates the mobilization of firefighters. In problems with up to 150 agents and 3000 tasks, our heuristic finds solutions up to 3.25 times better than the Earliest Deadline First approach commonly used in real-time systems. Our results constitute the first large-scale benchmark for the MARSC problem.