We investigate the emergence of ferromagnetism in the two-dimensional metal-halide CoBr$_2$, with a special focus on the role of electronic correlations. The calculated phonon spectrum shows that the system is thermodynamically stable unlike other Co halides. We apply two well-known methods for the estimation of the Curie temperature. First, we do DFT+U calculations to calculate exchange couplings, which are subsequently used in a classical Monte Carlo simulation of the resulting Ising spin model. The transition temperature calculated in this way is in the order of 100 K, but shows a strong dependence on the choice of interaction parameters. Second, we apply dynamical mean-field theory to calculate the correlated electronic structure and estimate the transition temperature.This results in a similar estimate for a noticeable transition temperature of approximately 100 K,however, without the strong dependence on the interaction parameters. The effect of electron-electron interactions are strongly orbital selective, with only moderate correlations in the three low-lying orbitals (one doublet plus one singlet), and strong correlations in the doublet at higher energy. This can be traced back to the electronic occupation in DMFT, with five electrons in the three low-lying orbitals and two electrons in the high-energy doublet, making the latter one half-filled. Nevertheless, the overall spectral gap is governed by the small gap originating from the low-lying doublet+singlet orbitals, which changes very weakly with interaction U. In that sense,the system is close to a Mott metal-to-insulator transition, which has been shown previously to be a hot-spot for strong magnetism.