Do you want to publish a course? Click here

Lensing contribution to the 21cm intensity bispectrum

66   0   0.0 ( 0 )
 Added by Rahul Kothari
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intensity maps of the 21cm emission line of neutral hydrogen are lensed by intervening large-scale structure, similar to the lensing of the cosmic microwave background temperature map. We extend previous work by calculating the lensing contribution to the full-sky 21cm bispectrum in redshift space. The lensing contribution tends to peak when equal-redshift fluctuations are lensed by a lower redshift fluctuation. At high redshift, lensing effects can become comparable to the contributions from density and redshift-space distortions.



rate research

Read More

Recent studies have demonstrated that {em secondary} non-Gaussianity induced by gravity will be detected with a high signal-to-noise (S/N) by future and even by on-going weak lensing surveys. One way to characterise such non-Gaussianity is through the detection of a non-zero three-point correlation function of the lensing convergence field, or of its harmonic transform, the bispectrum. A recent study analysed the properties of the squeezed configuration of the bispectrum, when two wavenumbers are much larger than the third one. We extend this work by estimating the amplitude of the (reduced) bispectrum in four generic configurations, i.e., {em squeezed, equilateral, isosceles} and {em folded}, and for four different source redshifts $z_s=0.5,1.0,1.5,2.0$, by using an ensemble of all-sky high-resolution simulations. We compare these results against theoretical predictions. We find that, while the theoretical expectations based on widely used fitting functions can predict the general trends of the reduced bispectra, a more accurate theoretical modelling will be required to analyse the next generation of all-sky weak lensing surveys. The disagreement is particularly pronounced in the squeezed limit.
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
After reionisation, the 21cm emission line of neutral hydrogen within galaxies provides a tracer of dark matter. Next-generation intensity mapping surveys, with the SKA and other radio telescopes, will cover large sky areas and a wide range of redshifts, facilitating their use as probes of primordial non-Gaussianity. {Previous works have shown that the bispectrum can achieve tight constraints on primordial non-Gaussianity with future surveys that are purposely designed for intensity mapping in interferometer mode}. Here we investigate the constraints attainable from surveys operating in single-dish mode, rev{using the combined power spectrum and bispectrum signal}. In the case of the power spectrum, single-dish surveys typically outperform interferometer surveys. We find that the reverse holds for the bispectrum: single-dish surveys are not competitive with surveys designed for interferometer mode.
We study how 21 cm intensity mapping can be used to measure gravitational lensing over a wide range of redshift. This can extend weak lensing measurements to higher redshifts than are accessible with conventional galaxy surveys. We construct a convergence estimator taking into account the discreteness of galaxies and calculate the expected noise level as a function of redshift and telescope parameters. At $z sim 2-3$ we find that a telescope array with a collecting area $sim 0.2 , {rm km}^2$ spread over a region with diameter $sim 2 , {rm km}$ would be sufficient to measure the convergence power spectrum to high accuracy for multipoles between 10 and 1,000. We show that these measurements can be used to constrain interacting dark energy models.
High-precision constraints on primordial non-Gaussianity (PNG) will significantly improve our understanding of the physics of the early universe. Among all the subtleties in using large scale structure observables to constrain PNG, accounting for relativistic corrections to the clustering statistics is particularly important for the upcoming galaxy surveys covering progressively larger fraction of the sky. We focus on relativistic projection effects due to the fact that we observe the galaxies through the light that reaches the telescope on perturbed geodesics. These projection effects can give rise to an effective $f_{rm NL}$ that can be misinterpreted as the primordial non-Gaussianity signal and hence is a systematic to be carefully computed and accounted for in modelling of the bispectrum. We develop the technique to properly account for relativistic effects in terms of purely observable quantities, namely angles and redshifts. We give some examples by applying this approach to a subset of the contributions to the tree-level bispectrum of the observed galaxy number counts calculated within perturbation theory and estimate the corresponding non-Gaussianity parameter, $f_{rm NL}$, for the local, equilateral and orthogonal shapes. For the local shape, we also compute the local non-Gaussianity resulting from terms obtained using the consistency relation for observed number counts. Our goal here is not to give a precise estimate of $f_{rm NL}$ for each shape but rather we aim to provide a scheme to compute the non-Gaussian contamination due to relativistic projection effects. For the terms considered in this work, we obtain contamination of $f_{rm NL}^{rm loc} sim {mathcal O}(1)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا