No Arabic abstract
The SIMT execution model is commonly used for general GPU development. CUDA and OpenCL developers write scalar code that is implicitly parallelized by compiler and hardware. On Intel GPUs, however, this abstraction has profound performance implications as the underlying ISA is SIMD and important hardware capabilities cannot be fully utilized. To close this performance gap we introduce C-For-Metal (CM), an explicit SIMD programming framework designed to deliver close-to-the-metal performance on Intel GPUs. The CM programming language and its vector/matrix types provide an intuitive interface to exploit the underlying hardware features, allowing fine-grained register management, SIMD size control and cross-lane data sharing. Experimental results show that CM applications from different domains outperform the best-known SIMT-based OpenCL implementations, achieving up to 2.7x speedup on the latest Intel GPU.
Convolution layers are prevalent in many classes of deep neural networks, including Convolutional Neural Networks (CNNs) which provide state-of-the-art results for tasks like image recognition, neural machine translation and speech recognition. The computationally expensive nature of a convolution operation has led to the proliferation of implementations including matrix-matrix multiplication formulation, and direct convolution primarily targeting GPUs. In this paper, we introduce direct convolution kernels for x86 architectures, in particular for Xeon and XeonPhi systems, which are implemented via a dynamic compilation approach. Our JIT-based implementation shows close to theoretical peak performance, depending on the setting and the CPU architecture at hand. We additionally demonstrate how these JIT-optimized kernels can be integrated into a lightweight multi-node graph execution model. This illustrates that single- and multi-node runs yield high efficiencies and high image-throughputs when executing state-of-the-art image recognition tasks on CPUs.
Stencil computations are widely used in HPC applications. Today, many HPC platforms use GPUs as accelerators. As a result, understanding how to perform stencil computations fast on GPUs is important. While implementation strategies for low-order stencils on GPUs have been well-studied in the literature, not all of proposed enhancements work well for high-order stencils, such as those used for seismic modeling. Furthermore, coping with boundary conditions often requires different computational logic, which complicates efficient exploitation of the thread-level parallelism on GPUs. In this paper, we study high-order stencils and their unique characteristics on GPUs. We manually crafted a collection of implementations of a 25-point seismic modeling stencil in CUDA and related boundary conditions. We evaluate their code shapes, memory hierarchy usage, data-fetching patterns, and other performance attributes. We conducted an empirical evaluation of these stencils using several mature and emerging tools and discuss our quantitative findings. Among our implementations, we achieve twice the performance of a proprietary code developed in C and mapped to GPUs using OpenACC. Additionally, several of our implementations have excellent performance portability.
Many applications require to learn, mine, analyze and visualize large-scale graphs. These graphs are often too large to be addressed efficiently using conventional graph processing technologies. Many applications have requirements to analyze, transform, visualize and learn large scale graphs. These graphs are often too large to be addressed efficiently using conventional graph processing technologies. Recent literatures convey that graph sampling/random walk could be an efficient solution. In this paper, we propose, to the best of our knowledge, the first GPU-based framework for graph sampling/random walk. First, our framework provides a generic API which allows users to implement a wide range of sampling and random walk algorithms with ease. Second, offloading this framework on GPU, we introduce warp-centric parallel selection, and two optimizations for collision migration. Third, towards supporting graphs that exceed GPU memory capacity, we introduce efficient data transfer optimizations for out-of-memory sampling, such as workload-aware scheduling and batched multi-instance sampling. In its entirety, our framework constantly outperforms the state-of-the-art projects. First, our framework provides a generic API which allows users to implement a wide range of sampling and random walk algorithms with ease. Second, offloading this framework on GPU, we introduce warp-centric parallel selection, and two novel optimizations for collision migration. Third, towards supporting graphs that exceed the GPU memory capacity, we introduce efficient data transfer optimizations for out-of-memory and multi-GPU sampling, such as workload-aware scheduling and batched multi-instance sampling. Taken together, our framework constantly outperforms the state of the art projects in addition to the capability of supporting a wide range of sampling and random walk algorithms.
The simulation of the two-dimensional Ising model is used as a benchmark to show the computational capabilities of Graphic Processing Units (GPUs). The rich programming environment now available on GPUs and flexible hardware capabilities allowed us to quickly experiment with several implementation ideas: a simple stencil-based algorithm, recasting the stencil operations into matrix multiplies to take advantage of Tensor Cores available on NVIDIA GPUs, and a highly optimized multi-spin coding approach. Using the managed memory API available in CUDA allows for simple and efficient distribution of these implementations across a multi-GPU NVIDIA DGX-2 server. We show that even a basic GPU implementation can outperform current results published on TPUs and that the optimized multi-GPU implementation can simulate very large lattices faster than custom FPGA solutions.
High-level programming languages such as Python are increasingly used to provide intuitive interfaces to libraries written in lower-level languages and for assembling applications from various components. This migration towards orchestration rather than implementation, coupled with the growing need for parallel computing (e.g., due to big data and the end of Moores law), necessitates rethinking how parallelism is expressed in programs. Here, we present Parsl, a parallel scripting library that augments Python with simple, scalable, and flexible constructs for encoding parallelism. These constructs allow Parsl to construct a dynamic dependency graph of components that it can then execute efficiently on one or many processors. Parsl is designed for scalability, with an extensible set of executors tailored to different use cases, such as low-latency, high-throughput, or extreme-scale execution. We show, via experiments on the Blue Waters supercomputer, that Parsl executors can allow Python scripts to execute components with as little as 5 ms of overhead, scale to more than 250 000 workers across more than 8000 nodes, and process upward of 1200 tasks per second. Other Parsl features simplify the construction and execution of composite programs by supporting elastic provisioning and scaling of infrastructure, fault-tolerant execution, and integrated wide-area data management. We show that these capabilities satisfy the needs of many-task, interactive, online, and machine learning applications in fields such as biology, cosmology, and materials science.