Do you want to publish a course? Click here

The Perseus ALMA Chemistry Survey (PEACHES). I. The Complex Organic Molecules in Perseus Embedded Protostars

102   0   0.0 ( 0 )
 Added by Yao-Lun Yang
 Publication date 2021
  fields Physics
and research's language is English
 Authors Yao-Lun Yang




Ask ChatGPT about the research

To date, about two dozen low-mass embedded protostars exhibit rich spectra with lines of complex organic molecule (COM). These protostars seem to possess different enrichment in COMs. However, the statistics of COM abundance in low-mass protostars are limited by the scarcity of observations. This study introduces the Perseus ALMA Chemistry Survey (PEACHES), which aims at unbiasedly characterizing the chemistry of COMs toward the embedded (Class 0/I) protostars in the Perseus molecular cloud. Of 50 embedded protostars surveyed, 58% of them have emission from COMs. A 56%, 32%, and 40% of the protostars have CH$_3$OH, CH$_3$OCHO, and N-bearing COMs, respectively. The detectability of COMs depends neither on the averaged continuum brightness temperature, a proxy of the H$_2$ column density, nor on the bolometric luminosity and the bolometric temperature. For the protostars with detected COMs, CH$_3$OH has a tight correlation with CH$_3$CN, spanning more than two orders of magnitude in column densities normalized by the continuum brightness temperature, suggesting a chemical relation between CH$_3$OH and CH$_3$CN and a large chemical diversity in the PEACHES samples at the same time. A similar trend with more scatter is also found between all identified COMs, hinting at a common chemistry for the sources with COMs. The correlation between COMs is insensitive to the protostellar properties, such as the bolometric luminosity and the bolometric temperature. The abundance of larger COMs (CH$_3$OCHO and CH$_3$OCH$_3$) relative to that of smaller COMs (CH$_3$OH and CH$_3$CN) increases with the inferred gas column density, hinting at an efficient production of complex species in denser envelopes.



rate research

Read More

We have analyzed ALMA Cycle 5 data in Band 4 toward three low-mass young stellar objects (YSOs), IRAS 03235+3004 (hereafter IRAS 03235), IRAS 03245+3002 (IRAS 03245), and IRAS 03271+3013 (IRAS 03271), in the Perseus region. The HC$_{3}$N ($J=16-15$; $E_{rm {up}}/k = 59.4$ K) line has been detected in all of the target sources, while four CH$_{3}$OH lines ($E_{rm {up}}/k = 15.4-36.3$ K) have been detected only in IRAS 03245. Sizes of the HC$_{3}$N distributions ($sim 2930-3230$ au) in IRAS 03235 and IRAS 03245 are similar to those of the carbon-chain species in the warm carbon chain chemistry (WCCC) source L1527. The size of the CH$_{3}$OH emission in IRAS 03245 is $sim 1760$ au, which is slightly smaller than that of HC$_{3}$N in this source. We compare the CH$_{3}$OH/HC$_{3}$N abundance ratios observed in these sources with predictions of chemical models. We confirm that the observed ratio in IRAS 03245 agrees with the modeled values at temperatures around 30--35 K, which supports the HC$_{3}$N formation by the WCCC mechanism. In this temperature range, CH$_{3}$OH does not thermally desorb from dust grains. Non-thermal desorption mechanisms or gas-phase formation of CH$_{3}$OH seem to work efficiently around IRAS 03245. The fact that IRAS 03245 has the highest bolometric luminosity among the target sources seems to support these mechanisms, in particular the non-thermal desorption mechanisms.
Complex organic molecules (COMs) have been observed towards several low-mass young stellar objects (LYSOs). Small and heterogeneous samples have so far precluded conclusions on typical COM abundances, as well as the origin(s) of abundance variations between sources. We present observations towards 16 deeply embedded (Class 0/I) low-mass protostars using the IRAM 30m telescope. We detect CH$_2$CO, CH$_3$CHO, CH$_3$OCH$_3$, CH$_3$OCHO, CH$_3$CN, HNCO, and HC$_3$N towards 67%, 37%, 13%, 13%, 44%, 81%, and 75% of sources respectively. Median column densities derived using survival analysis range between 6.0x10$^{10}$ cm$^{-2}$ (CH$_3$CN) and 2.4x10$^{12}$ cm$^{-2}$ (CH$_3$OCH$_3$) and median abundances range between 0.48% (CH$_3$CN) and 16% (HNCO) with respect to CH$_3$OH. Column densities for each molecule vary by about one order of magnitude across the sample. Abundances with respect to CH$_3$OH are more narrowly distributed, especially for oxygen-bearing species. We compare observed median abundances with a chemical model for low-mass protostars and find fair agreement, although some modeling work remains to bring abundances higher with respect to CH$_3$OH. Median abundances with respect to CH$_3$OH in LYSOs are also found to be generally comparable to observed abundances in hot cores, hot corinos, and massive young stellar objects. Compared with comets, our sample is comparable for all molecules except HC$_3$N and CH$_2$CO, which likely become depleted at later evolutionary stages.
Complex organic molecules (COMs) have been detected in a few Class 0 protostars but their origin is not well understood. Going beyond studies of individual objects, we want to investigate the origin of COMs in young protostars on a statistical basis. We use the CALYPSO survey performed with the IRAM PdBI to search for COMs at high angular resolution in a sample of 26 solar-type protostars, including 22 Class 0 and four Class I objects. Methanol is detected in 12 sources and tentatively in one source, which represents half of the sample. Eight sources (30%) have detections of at least three COMs. We find a strong chemical differentiation in multiple systems with five systems having one component with at least three COMs detected but the other component devoid of COM emission. The internal luminosity is found to be the source parameter impacting the most the COM chemical composition of the sources, while there is no obvious correlation between the detection of COM emission and that of a disk-like structure. A canonical hot-corino origin may explain the COM emission in four sources, an accretion-shock origin in two or possibly three sources, and an outflow origin in three sources. The CALYPSO sources with COM detections can be classified into three groups on the basis of the abundances of oxygen-bearing molecules, cyanides, and CHO-bearing molecules. These chemical groups correlate neither with the COM origin scenarii, nor with the evolutionary status of the sources if we take the ratio of envelope mass to internal luminosity as an evolutionary tracer. We find strong correlations between molecules that are a priori not related chemically (for instance methanol and methyl cyanide), implying that the existence of a correlation does not imply a chemical link. [abridged]
83 - John J. Tobin 2016
We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array (VLA) survey at Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L$_{odot}$ and $sim$33 L$_{odot}$, with a median of 0.7 L$_{odot}$. This multiplicity study is based on the Ka-band data, having a best resolution of $sim$0.065 (15 AU) and separations out to $sim$43 (10000 AU) can be probed. The overall multiplicity fraction (MF) is found to be of 0.40$pm$0.06 and the companion star fraction (CSF) is 0.71$pm$0.06. The MF and CSF of the Class 0 protostars are 0.57$pm$0.09 and 1.2$pm$0.2, and the MF and CSF of Class I protostars are both 0.23$pm$0.08. The distribution of companion separations appears bi-modal, with a peak at $sim$75 AU and another peak at $sim$3000 AU. Turbulent fragmentation is likely the dominant mechanism on $>$1000 AU scales and disk fragmentation is likely to be the dominant mechanism on $<$200 AU scales. Toward three Class 0 sources we find companions separated by $<$30 AU. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50 AU to 400 AU) structures and may be candidates for ongoing disk fragmentation.
We use photometric and kinematic data from Gaia DR2 to explore the structure of the star forming region associated with the molecular cloud of Perseus. Apart from the two well known clusters, IC 348 and NGC 1333, we present five new clustered groups of young stars, which contain between 30 and 300 members, named Autochthe, Alcaeus, Heleus, Electryon and Mestor. We demonstrate these are co-moving groups of young stars, based on how the candidate members are distributed in position, proper motion, parallax and colour-magnitude space. By comparing their colour-magnitude diagrams to isochrones we show that they have ages between 1 and 5 Myr. Using 2MASS and WISE colours we find that the fraction of stars with discs in each group ranges from 10 to 50 percent. The youngest of the new groups is also associated with a reservoir of cold dust, according to the Planck map at 353 GHz. We compare the ages and proper motions of the five new groups to those of IC 348 and NGC 1333. Autochthe is clearly linked with NGC 1333 and may have formed in the same star formation event. The seven groups separate roughly into two sets which share proper motion, parallax and age: Heleus, Electryon, Mestor as the older set, and NGC 1333, Autochthe as the younger set. Alcaeus is kinematically related to the younger set, but at a more advanced age, while the properties of IC 348 overlap with both sets. All older groups in this star forming region are located at higher galactic latitude.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا