No Arabic abstract
The soft gamma-ray repeater candidate SGR 0755$-$2933 was discovered in 2016 by Swift/BAT, which detected a short ($sim$30 ms) powerful burst typical of magnetars. To understand the nature of the source, we present here an analysis of follow-up observations of the tentative soft X-ray counterpart of the source obtained with Swift/XRT, NuSTAR and Chandra. From our analysis we conclude that, based on the observed counterpart position and properties, it is actually not a soft gamma ray repeater but rather a new high mass X-ray binary. We suggest to refer to it as 2SXPS J075542.5$-$293353. We conclude, therefore, that the available data do not allow us to confirm existence and identify the true soft X-ray counterpart to the burst event. Presence of a soft counterpart is, however, essential to unambiguously associate the burst with a magnetar flare, and thus we conclude that magnetar origin of the burst and precise burst location remain uncertain and require further investigation.
We present an analysis of three archival Chandra observations of the black hole V4641 Sgr, performed during a decline into quiescence. The last two observations in the sequence can be modeled with a simple power-law. The first spectrum, however, is remarkably similar to spectra observed in Seyfert-2 active galactic nuclei, which arise through a combination of obscuration and reflection from distant material. This spectrum of V4641 Sgr can be fit extremely well with a model including partial-covering absorption and distant reflection. This model recovers a Gamma = 2 power-law incident spectrum, typical of black holes at low Eddington fractions. The implied geometry is plausible in a high-mass X-ray binary like V4641 Sgr, and may be as compelling as explanations invoking Doppler-split line pairs in a jet, and/or unusual Comptonization. We discuss potential implications and means of testing these models.
The source IGR J17200-3116 was discovered in the hard X-ray band by INTEGRAL. A periodic X-ray modulation at ~326 s was detected in its Swift light curves by our group (and subsequently confirmed by a Swift campaign). In this paper, we report on the analysis of all the Swift observations, which were collected between 2005 and 2011, and of a ~20 ks XMM-Newton pointing that was carried out in 2013 September. During the years covered by the Swift and XMM-Newton observations, the 1-10 keV fluxes range from ~1.5 to 4E-11 erg/cm^2/s. IGR J17200-3116 displays spectral variability as a function of the pulse phase and its light curves show at least one short (a few hundreds of seconds) dip, during which the flux dropped at 20-30% of the average level. Overall, the timing and spectral characteristics of IGR J17200-3116 point to an accreting neutron star in a high-mass system but, while the pulse-phase spectral variability can be accounted for by assuming a variable local absorbing column density, the origin of the dip is unclear. We discuss different possible explanations for this feature, favouring a transition to an ineffective accretion regime, instead of an enhanced absorption along the line of sight.
Using data collected with the BeppoSAX, INTEGRAL and Swift satellites, we report and discuss the results of a study on the X-ray emission properties of the X-ray source 1ES 1210-646, recently classified as a high-mass X-ray binary through optical spectroscopy. This is the first in-depth analysis of the X-ray spectral characteristics of this source. We found that the flux of 1ES 1210-646 varies by a factor of about 3 on a timescale of hundreds of seconds and by a factor of at least 10 among observations acquired over a time span of several months. The X-ray spectrum of 1ES 1210-646 is described using a simple powerlaw shape or, in the case of INTEGRAL data, with a blackbody plus powerlaw model. Spectral variability is found in connection with different flux levels of the source. A strong and transient iron emission line with an energy of about 6.7 keV and an equivalent width of about 1.6 keV is detected when the source is found at an intermediate flux level. The line strength seems to be tied to the orbital motion of the accreting object, as this feature is only apparent at the periastron. Although the X-ray spectral description we find for the 1ES 1210-646 emission is quite atypical for a high-mass X-ray binary, the multiwavelegth information available for this object leads us to confirm this classification. The results presented here allow us instead to definitely rule out the possibility that 1ES 1210-646 is a (magnetic) cataclysmic variable as proposed previously and, in a broader sense, a white dwarf nature for the accretor is disfavoured. X-ray spectroscopic data actually suggest a neutron star with a low magnetic field as the accreting object in this system.
A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a High-Mass X-ray Binary (HMXB) with orbital period likely to be of order tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass > 25 solar masses
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium and neon whose strengths and presence depend on the overall level of absorption. They imply a co-existence of cool and hot gas phases in the system that we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.