The VLT-MUSE and ALMA view of the MACS 1931.8-2635 brightest cluster galaxy


Abstract in English

We reveal the importance of ongoing in-situ star formation in the Brightest Cluster Galaxy in the massive cool-core CLASH cluster MACS 1931.8-2635 at z=0.35. Using a multi-wavelength approach, we assess the stellar and warm ionized medium components, spatially resolved by the VLT-MUSE spectroscopy, and link them to the molecular gas by incorporating sub-mm ALMA observations. We measure the fluxes of strong emission lines, allowing us to determine the physical conditions of the warm ionized gas. The ionized gas flux brightness peak corresponds to the location of the supermassive black hole and the system shows a diffuse warm ionized gas tail extending 30 kpc in N-E direction. The ionized and molecular gas are co-spatial and co-moving, with the gaseous component in the tail falling inward, providing fuel for star formation and accretion-powered nuclear activity. The gas is ionized by a mix of star formation and other energetic processes which give rise to LINER-like emission, with active galactic nuclei emission dominant only in the BCG core. We measure a star formation rate of 97 Msun/yr, with its peak at the BCG core. However, star formation accounts for only 50-60% of the energetics needed to ionize the warm gas. In situ star formation generated by thermally unstable intracluster medium cooling and/or dry mergers dominate the stellar mass growth at z<0.5 and these mechanisms account for the build-up of 20% of the mass of the system. Our measurements reveal that the most central regions of the BCG contain the lowest gas phase oxygen abundance, whereas the tail exhibits slightly more elevated values. The galaxy is a dispersion dominated system, typical for massive, elliptical galaxies. The gas and stellar kinematics are decoupled, with the gaseous velocity fields being more closely related to the bulk motions of the intracluster medium.

Download