No Arabic abstract
Explainable Artificial Intelligence (XAI) has in recent years become a well-suited framework to generate human understandable explanations of black box models. In this paper, we present a novel XAI visual explanation algorithm denoted SIDU that can effectively localize entire object regions responsible for prediction in a full extend. We analyze its robustness and effectiveness through various computational and human subject experiments. In particular, we assess the SIDU algorithm using three different types of evaluations (Application, Human and Functionally-Grounded) to demonstrate its superior performance. The robustness of SIDU is further studied in presence of adversarial attack on black box models to better understand its performance.
A new brand of technical artificial intelligence ( Explainable AI ) research has focused on trying to open up the black box and provide some explainability. This paper presents a novel visual explanation method for deep learning networks in the form of a saliency map that can effectively localize entire object regions. In contrast to the current state-of-the art methods, the proposed method shows quite promising visual explanations that can gain greater trust of human expert. Both quantitative and qualitative evaluations are carried out on both general and clinical data sets to confirm the effectiveness of the proposed method.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
EXplainable AI (XAI) methods have been proposed to interpret how a deep neural network predicts inputs through model saliency explanations that highlight the parts of the inputs deemed important to arrive a decision at a specific target. However, it remains challenging to quantify correctness of their interpretability as current evaluation approaches either require subjective input from humans or incur high computation cost with automated evaluation. In this paper, we propose backdoor trigger patterns--hidden malicious functionalities that cause misclassification--to automate the evaluation of saliency explanations. Our key observation is that triggers provide ground truth for inputs to evaluate whether the regions identified by an XAI method are truly relevant to its output. Since backdoor triggers are the most important features that cause deliberate misclassification, a robust XAI method should reveal their presence at inference time. We introduce three complementary metrics for systematic evaluation of explanations that an XAI method generates and evaluate seven state-of-the-art model-free and model-specific posthoc methods through 36 models trojaned with specifically crafted triggers using color, shape, texture, location, and size. We discovered six methods that use local explanation and feature relevance fail to completely highlight trigger regions, and only a model-free approach can uncover the entire trigger region.
Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) explanations of systems built on machine learning methods can become crucial. Inductive Logic Programming (ILP) is a subfield of symbolic AI aimed to automatically learn declarative theories about the process of data. Learning from Interpretation Transition (LFIT) is an ILP technique that can learn a propositional logic theory equivalent to a given black-box system (under certain conditions). The present work takes a first step to a general methodology to incorporate accurate declarative explanations to classic machine learning by checking the viability of LFIT in a specific AI application scenario: fair recruitment based on an automatic tool generated with machine learning methods for ranking Curricula Vitae that incorporates soft biometric information (gender and ethnicity). We show the expressiveness of LFIT for this specific problem and propose a scheme that can be applicable to other domains.
Digital Twin is an emerging technology at the forefront of Industry 4.0, with the ultimate goal of combining the physical space and the virtual space. To date, the Digital Twin concept has been applied in many engineering fields, providing useful insights in the areas of engineering design, manufacturing, automation, and construction industry. While the nexus of various technologies opens up new opportunities with Digital Twin, the technology requires a framework to integrate the different technologies, such as the Building Information Model used in the Building and Construction industry. In this work, an Information Fusion framework is proposed to seamlessly fuse heterogeneous components in a Digital Twin framework from the variety of technologies involved. This study aims to augment Digital Twin in buildings with the use of AI and 3D reconstruction empowered by unmanned aviation vehicles. We proposed a drone-based Digital Twin augmentation framework with reusable and customisable components. A proof of concept is also developed, and extensive evaluation is conducted for 3D reconstruction and applications of AI for defect detection.