Do you want to publish a course? Click here

ALMA observation of the protoplanetary disk around WW Cha: faint double-peaked ring and asymmetric structure

217   0   0.0 ( 0 )
 Added by Kazuhiro Kanagawa D
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations of dust continuum emission of the disk around WW Cha. The dust continuum image shows a smooth disk structure with a faint (low-contrast) dust ring, extending from $sim 40$ au to $sim 70$ au, not accompanied by any gap. We constructed the simple model to fit the visibility of the observed data by using MCMC method and found that the bump (we call the ring without the gap the bump) has two peaks at $40$ au and $70$ au. The residual map between the model and observation indicates asymmetric structures at the center and the outer region of the disk. These asymmetric structures are also confirmed by model-independent analysis of the imaginary part of the visibility. The asymmetric structure at the outer region is consistent with a spiral observed by SPHERE. To constrain physical quantities of the disk (dust density and temperature), we carried out radiative transfer simulations. We found that the midplane temperature around the outer peak is close to the freezeout temperature of CO on water ice ($sim 30$ K). The temperature around the inner peak is about $50$ K, which is close to the freezeout temperature of H$_2$S and also close to the sintering temperature of several species. We also discuss the size distribution of the dust grains using the spectral index map obtained within the Band 6 data.



rate research

Read More

We observe the dust continuum at 225 GHz and CO isotopologue (12CO, 13CO, and C18O) J=2-1 emission lines toward the CR Cha protoplanetary disk using the Atacama Large Millimeter/Submillimeter Array (ALMA). The dust continuum image shows a dust gap-ring structure in the outer region of the dust disk. A faint dust ring is also detected around 120 au beyond the dust gap. The CO isotopologue lines indicate that the gas disk is more extended than the dust disk. The peak brightness temperature of the 13CO line shows a small bump around 130 au while 12CO and C18O lines do not show. We investigate two possible mechanisms for reproducing the observed dust gap-ring structure and a gas temperature bump. First, the observed gap structure can be opened by a Jupiter mass planet using the relation between the planet mass and the gap depth and width. Meanwhile, the radiative transfer calculations based on the observed dust surface density profile show that the observed dust ring could be formed by dust accumulation at the gas temperature bump, that is, the gas pressure bump produced beyond the outer edge of the dust disk.
We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from the central star, respectively, and are associated with the CO snow line at ~30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ~15 au. In addition, the 13CO and C18O J = 3 - 2 lines show a decrement in CO line emission throughout the disk, down to ~10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2M_{Neptune}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice.
We report an analysis of the dust disk around DM~Tau, newly observed with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm. The ALMA observations with high sensitivity (8.4~$mu$Jy/beam) and high angular resolution (35~mas, 5.1~au) detect two asymmetries on the ring at $rsim$20~au. They could be two vortices in early evolution, the destruction of a large scale vortex, or double continuum emission peaks with different dust sizes. We also found millimeter emissions with $sim$50~$mu$Jy (a lower limit dust mass of 0.3~$M_{rm Moon}$) inside the 3-au ring. To characterize these emissions, we modeled the spectral energy distribution (SED) of DM~Tau using a Monte Carlo radiative transfer code. We found that an additional ring at $r=$ 1~au could explain both the DM~Tau SED and the central point source. The disk midplane temperature at the 1-au ring calculated in our modeling is less than the typical water sublimation temperature of 150~K, prompting the possibility of forming small icy planets there.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of a protoplanetary disk around the T Tauri star Sz~84 and analyses of the structures of the inner cavity in the central region of the dust disk. Sz~84s spectral energy distribution (SED) has been known to exhibit negligible infrared excess at $lambda lesssim$10~$mu$m due to the disks cavity structure. Analyses of the observed visibilities of dust continuum at 1.3~mm and the SED indicate that the size of the cavity in the disk of large (millimeter size) dust grains is 8~au in radius and that in the disk of small (sub-micron size) dust grains is 60~au in radius. Furthermore, from the SED analyses, we estimate that the upper limit mass of small dust grains at $r<$60~au is less than $sim$10$^{-3}$~$M_{rm earth}$, which is $lesssim$0.01~% of the total (small~$+$~large) dust mass at $r<$60~au. These results suggest that large dust grains are dominant at $r<$60~au, implying that dust grains efficiently grow with less efficient fragmentation in this region, potentially due to weak turbulence and/or stickier dust grains. The balance of grain growth and dust fragmentation is an important factor for determining the size of large dust grains in protoplanetary disks, and thus Sz~84 could serve as a good testbed for investigations of grain growth in such disks.
Gap-like structures in protoplanetary disks are likely related to planet formation processes. In this paper, we present and analyze high resolution (0.17*0.11 arcsec) 1.3 mm ALMA continuum observations of the protoplanetary disk around the Herbig Ae star MWC 480. Our observations for the first time show a gap centered at ~74au with a width of ~23au, surrounded by a bright ring centered at ~98au from the central star. Detailed radiative transfer modeling of both the ALMA image and the broadband spectral energy distribution is used to constrain the surface density profile and structural parameters of the disk. If the width of the gap corresponds to 4~8 times the Hill radius of a single forming planet, then the putative planet would have a mass of 0.4~3 M_Jup. We test this prediction by performing global three-dimensional smoothed particle hydrodynamic gas/dust simulations of disks hosting a migrating and accreting planet. We find that the dust emission across the disk is consistent with the presence of an embedded planet with a mass of ~2.3 M_Jup at an orbital radius of ~78au. Given the surface density of the best-fit radiative transfer model, the amount of depleted mass in the gap is higher than the mass of the putative planet, which satisfies the basic condition for the formation of such a planet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا