Endpoint $ ell ^{r}$ improving estimates for Prime averages


Abstract in English

Let $ Lambda $ denote von Mangoldts function, and consider the averages begin{align*} A_N f (x) &=frac{1}{N}sum_{1leq n leq N}f(x-n)Lambda(n) . end{align*} We prove sharp $ ell ^{p}$-improving for these averages, and sparse bounds for the maximal function. The simplest inequality is that for sets $ F, Gsubset [0,N]$ there holds begin{equation*} N ^{-1} langle A_N mathbf 1_{F} , mathbf 1_{G} rangle ll frac{lvert Frvert cdot lvert Grvert} { N ^2 } Bigl( operatorname {Log} frac{lvert Frvert cdot lvert Grvert} { N ^2 } Bigr) ^{t}, end{equation*} where $ t=2$, or assuming the Generalized Riemann Hypothesis, $ t=1$. The corresponding sparse bound is proved for the maximal function $ sup_N A_N mathbf 1_{F}$. The inequalities for $ t=1$ are sharp. The proof depends upon the Circle Method, and an interpolation argument of Bourgain.

Download