Do you want to publish a course? Click here

Kerr-Nonlinearity-Induced Mode-Splitting in Optical Microresonators

158   0   0.0 ( 0 )
 Added by George Ghalanos
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kerr effect in optical microresonators plays an important role for integrated photonic devices and enables third harmonic generation, four-wave mixing, and the generation of microresonator-based frequency combs. Here we experimentally demonstrate that the Kerr nonlinearity can split ultra-high-Q microresonator resonances for two continuous-wave lasers. The resonance splitting is induced by self- and cross-phase modulation and counter-intuitively enables two lasers at different wavelengths to be simultaneously resonant in the same microresonator mode. We develop a pump-probe spectroscopy scheme that allows us to measure power dependent resonance splittings of up to 35 cavity linewidths (corresponding to 52 MHz) at 10 mW of pump power. The required power to split the resonance by one cavity linewidth is only 286${mu}$W. In addition, we demonstrate threefold resonance splitting when taking into account four-wave mixing and two counterpropagating probe lasers. These Kerr splittings are of interest for applications that require two resonances at optically controlled offsets, eg. for opto-mechanical coupling to phonon modes, optical memories, and precisely adjustable spectral filters.



rate research

Read More

This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this class of bright solitons are discussed. Moreover, analytical and numerical descriptions are presented that do not only reproduce qualitative features but can also be used to accurately model and predict the characteristics of experimental systems. Particular emphasis lies on temporal dissipative Kerr solitons with regard to optical frequency comb generation where they are of particular importance. Here, one example is spectral broadening and self-referencing enabled by the ultra-short pulsed nature of the solitons. Another example is dissipative Kerr soliton formation in integrated on-chip microresonators where the emission of a dispersive wave allows for the direct generation of unprecedentedly broadband and coherent soliton spectra with smooth spectral envelope.
Solitons are shape preserving waveforms that are ubiquitous across nonlinear dynamical systems and fall into two separate classes, that of bright solitons, formed in the anomalous group velocity dispersion regime, and `dark solitons in the normal dispersion regime. Both types of soliton have been observed in BEC, hydrodynamics, polaritons, and mode locked lasers, but have been particularly relevant to the generation of chipscale microresonator-based frequency combs (microcombs), used in numerous system level applications in timing, spectroscopy, and communications. For microcombs, both bright solitons, and alternatively dark pulses based on interlocking switching waves, have been studied. Yet, the existence of localized dissipative structures that fit between this dichotomy has been theoretically predicted, but proven experimentally elusive. Here we report the discovery of dissipative structures that embody a hybrid between switching waves and dissipative solitons, existing in the regime of (nearly) vanishing group velocity dispersion where third-order dispersion is dominant, hence termed as `zero-dispersion solitons. These dissipative structures are formed via collapsing switching wave fronts, forming clusters of quantized solitonic sub-structures. The switching waves are formed directly via synchronous pulse-driving of a photonic chip-based Si3N4 microresonator. The resulting frequency comb spectrum is extremely broad in both the switching wave and zero-dispersion soliton regime, reaching 136 THz or 97% of an octave. Fourth-order dispersion engineering results in dual-dispersive wave formation, and a novel quasi-phase matched wave related to Faraday instability. This exotic unanticipated dissipative structure expands the domain of Kerr cavity physics to the regime near zero-dispersion and could present a superior alternative to conventional solitons for broadband comb generation.
108 - T. Herr , V. Brasch , J.D. Jost 2013
The formation of temporal dissipative solitons in optical microresonators enables compact, high repetition rate sources of ultra-short pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the influence of the resonator mode spectrum on temporal soliton formation. Using frequency comb assisted diode laser spectroscopy, the measured mode structure of crystalline MgF2 resonators are correlated with temporal soliton formation. While an overal general anomalous dispersion is required, it is found that higher order dispersion can be tolerated as long as it does not dominate the resonators mode structure. Mode coupling induced avoided crossings in the resonator mode spectrum are found to prevent soliton formation, when affecting resonator modes close to the pump laser. The experimental observations are in excellent agreement with numerical simulations based on the nonlinear coupled mode equations, which reveal the rich interplay of mode crossings and soliton formation.
We demonstrate numerically novel mechanism providing generation of the flat-top solitonic pulses, platicons, in optical microresonators at normal GVD via negative thermal effects. We found that platicon excitation is possible if the ratio of the photon lifetime to the thermal relaxation time is large enough. We show that there are two regimes of the platicon generation depending on the pump amplitude: the smooth one and the oscillatory one. Parameter ranges providing platicon excitation are found and analysed for different values of the thermal relaxation time, frequency-scan rate and GVD coefficient. Possibility of the turn-key generation regime is also shown.
We investigate numerically and experimentally the statistics of the changes in the amount of frequency splitting upon the adsorption of particles one-by-one into the mode volume of whispering gallery mode (WGM) microresonator and microlasers. This multiple-particle induced frequency splitting (MPIFS) statistics carries information on the size and the number of adsorbed particles into the mode volume, and it is strongly affected by two experimental parameters, namely the WGM field distribution and the positions of the particles within the mode volume. We show that the standard deviation and maximum value of the MPIFS are proportional to the polarizability of the particles, and propose a method to estimate particle size from the MPIFS if the only available data from experiments is frequency splitting.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا