Growth of metamaterial from Isolated nuclei with anisotropic building block


Abstract in English

Crystallization has long been the subject of research as one of the basic ways in which solid materials are constructed. In particular, the nucleation stage has not been isolated, thus has been predicted through many calculations and achieved theoretical completion through the nucleation rate(J). Si nce most of these results were obtained through isotropic building blocks in three-dimensional space, it was difficult to interpret nuclei formed by anisotropic building block in 2D or 1D structure. Recently, a lot of studies related to amyloid fibril have shown nucleation of anisotropic building block. However, due to the complexity of the amyloid fibrils, there is no unified explanation of the thermodynamic method of classical nucleation theory which is the energy loss from surface and energy gain from volume. We have experimentally demonstrated the isolation of nuclei of the orthorhombic phase of HYLION-12 which is a Dirac metamaterial and provide the effect of anisotropy of the molecules on nucleation The thermal behavior of nuclei of Dirac metamaterial through DSC has demonstrated that it can be crystallized to a Dirac metamaterial through the first order phase transition. The growth process is verified at low temperature where no phase transition occurs. The calculation of surface and bulk energy of the Dirac metamaterial was conducted. It could explain the isolation of nuclei of the Dirac metamaterial by enlarging the thermodynamic classical nucleation theory.

Download