No Arabic abstract
Distant and weak supervision allow to obtain large amounts of labeled training data quickly and cheaply, but these automatic annotations tend to contain a high amount of errors. A popular technique to overcome the negative effects of these noisy labels is noise modelling where the underlying noise process is modelled. In this work, we study the quality of these estimated noise models from the theoretical side by deriving the expected error of the noise model. Apart from evaluating the theoretical results on commonly used synthetic noise, we also publish NoisyNER, a new noisy label dataset from the NLP domain that was obtained through a realistic distant supervision technique. It provides seven sets of labels with differing noise patterns to evaluate different noise levels on the same instances. Parallel, clean labels are available making it possible to study scenarios where a small amount of gold-standard data can be leveraged. Our theoretical results and the corresponding experiments give insights into the factors that influence the noise model estimation like the noise distribution and the sampling technique.
We propose a simulation framework for generating realistic instance-dependent noisy labels via a pseudo-labeling paradigm. We show that the distribution of the synthetic noisy labels generated with our framework is closer to human labels compared to independent and class-conditional random flipping. Equipped with controllable label noise, we study the negative impact of noisy labels across a few realistic settings to understand when label noise is more problematic. We also benchmark several existing algorithms for learning with noisy labels and compare their behavior on our synthetic datasets and on the datasets with independent random label noise. Additionally, with the availability of annotator information from our simulation framework, we propose a new technique, Label Quality Model (LQM), that leverages annotator features to predict and correct against noisy labels. We show that by adding LQM as a label correction step before applying existing noisy label techniques, we can further improve the models performance.
State-of-the-art machine learning methods exhibit limited compositional generalization. At the same time, there is a lack of realistic benchmarks that comprehensively measure this ability, which makes it challenging to find and evaluate improvements. We introduce a novel method to systematically construct such benchmarks by maximizing compound divergence while guaranteeing a small atom divergence between train and test sets, and we quantitatively compare this method to other approaches for creating compositional generalization benchmarks. We present a large and realistic natural language question answering dataset that is constructed according to this method, and we use it to analyze the compositional generalization ability of three machine learning architectures. We find that they fail to generalize compositionally and that there is a surprisingly strong negative correlation between compound divergence and accuracy. We also demonstrate how our method can be used to create new compositionality benchmarks on top of the existing SCAN dataset, which confirms these findings.
Generating paraphrases that are lexically similar but semantically different is a challenging task. Paraphrases of this form can be used to augment data sets for various NLP tasks such as machine reading comprehension and question answering with non-trivial negative examples. In this article, we propose a deep variational model to generate paraphrases conditioned on a label that specifies whether the paraphrases are semantically related or not. We also present new training recipes and KL regularization techniques that improve the performance of variational paraphrasing models. Our proposed model demonstrates promising results in enhancing the generative power of the model by employing label-dependent generation on paraphrasing datasets.
Collecting large-scale data with clean labels for supervised training of neural networks is practically challenging. Although noisy labels are usually cheap to acquire, existing methods suffer a lot from label noise. This paper targets at the challenge of robust training at high label noise regimes. The key insight to achieve this goal is to wisely leverage a small trusted set to estimate exemplar weights and pseudo labels for noisy data in order to reuse them for supervised training. We present a holistic framework to train deep neural networks in a way that is highly invulnerable to label noise. Our method sets the new state of the art on various types of label noise and achieves excellent performance on large-scale datasets with real-world label noise. For instance, on CIFAR100 with a $40%$ uniform noise ratio and only 10 trusted labeled data per class, our method achieves $80.2{pm}0.3%$ classification accuracy, where the error rate is only $1.4%$ higher than a neural network trained without label noise. Moreover, increasing the noise ratio to $80%$, our method still maintains a high accuracy of $75.5{pm}0.2%$, compared to the previous best accuracy $48.2%$. Source code available: https://github.com/google-research/google-research/tree/master/ieg
Learning with the textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise. Note that there are psychological and physiological evidences showing that we humans perceive instances by decomposing them into parts. Annotators are therefore more likely to annotate instances based on the parts rather than the whole instances, where a wrong mapping from parts to classes may cause the instance-dependent label noise. Motivated by this human cognition, in this paper, we approximate the instance-dependent label noise by exploiting textit{part-dependent} label noise. Specifically, since instances can be approximately reconstructed by a combination of parts, we approximate the instance-dependent textit{transition matrix} for an instance by a combination of the transition matrices for the parts of the instance. The transition matrices for parts can be learned by exploiting anchor points (i.e., data points that belong to a specific class almost surely). Empirical evaluations on synthetic and real-world datasets demonstrate our method is superior to the state-of-the-art approaches for learning from the instance-dependent label noise.