Do you want to publish a course? Click here

Nested Sampling Methods

100   0   0.0 ( 0 )
 Added by Johannes Buchner
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Nested sampling (NS) computes parameter posterior distributions and makes Bayesian model comparison computationally feasible. Its strengths are the unsupervised navigation of complex, potentially multi-modal posteriors until a well-defined termination point. A systematic literature review of nested sampling algorithms and variants is presented. We focus on complete algorithms, including solutions to likelihood-restricted prior sampling, parallelisation, termination and diagnostics. The relation between number of live points, dimensionality and computational cost is studied for two complete algorithms. A new formulation of NS is presented, which casts the parameter space exploration as a search on a tree. Previously published ways of obtaining robust error estimates and dynamic variations of the number of live points are presented as special cases of this formulation. A new on-line diagnostic test is presented based on previous insertion rank order work. The survey of nested sampling methods concludes with outlooks for future research.



rate research

Read More

It was recently emphasised by Riley (2019); Schittenhelm & Wacker (2020) that that in the presence of plateaus in the likelihood function nested sampling (NS) produces faulty estimates of the evidence and posterior densities. After informally explaining the cause of the problem, we present a modified version of NS that handles plateaus and can be applied retrospectively to NS runs from popular NS software using anesthetic. In the modified NS, live points in a plateau are evicted one by one without replacement, with ordinary NS compression of the prior volume after each eviction but taking into account the dynamic number of live points. The live points are replenished once all points in the plateau are removed. We demonstrate it on a number of examples. Since the modification is simple, we propose that it becomes the canonical version of Skillings NS algorithm.
96 - Brendon J. Brewer 2017
The Shannon entropy, and related quantities such as mutual information, can be used to quantify uncertainty and relevance. However, in practice, it can be difficult to compute these quantities for arbitrary probability distributions, particularly if the probability mass functions or densities cannot be evaluated. This paper introduces a computational approach, based on Nested Sampling, to evaluate entropies of probability distributions that can only be sampled. I demonstrate the method on three examples: a simple gaussian example where the key quantities are available analytically; (ii) an experimental design example about scheduling observations in order to measure the period of an oscillating signal; and (iii) predicting the future from the past in a heavy-tailed scenario.
133 - Kamran Javid 2019
Metropolis nested sampling evolves a Markov chain from a current livepoint and accepts new points along the chain according to a version of the Metropolis acceptance ratio modified to satisfy the likelihood constraint, characteristic of nested sampling algorithms. The geometric nested sampling algorithm we present here is a based on the Metropolis method, but treats parameters as though they represent points on certain geometric objects, namely circles, tori and spheres. For parameters which represent points on a circle or torus, the trial distribution is `wrapped around the domain of the posterior distribution such that samples cannot be rejected automatically when evaluating the Metropolis ratio due to being outside the sampling domain. Furthermore, this enhances the mobility of the sampler. For parameters which represent coordinates on the surface of a sphere, the algorithm transforms the parameters into a Cartesian coordinate system before sampling which again makes sure no samples are automatically rejected, and provides a physically intutive way of the sampling the parameter space. We apply the geometric nested sampler to two types of toy model which include circular, toroidal and spherical parameters. We find that the geometric nested sampler generally outperforms textsc{MultiNest} in both cases. %We also apply the algorithm to a gravitational wave detection model which includes circular and spherical parameters, and find that the geometric nested sampler and textsc{MultiNest} appear to perform equally well as one another. Our implementation of the algorithm can be found at url{https://github.com/SuperKam91/nested_sampling}.
179 - Kamran Javid 2020
Metropolis Hastings nested sampling evolves a Markov chain, accepting new points along the chain according to a version of the Metropolis Hastings acceptance ratio, which has been modified to satisfy the nested sampling likelihood constraint. The geometric nested sampling algorithm I present here is based on the Metropolis Hastings method, but treats parameters as though they represent points on certain geometric objects, namely circles, tori and spheres. For parameters which represent points on a circle or torus, the trial distribution is wrapped around the domain of the posterior distribution such that samples cannot be rejected automatically when evaluating the Metropolis ratio due to being outside the sampling domain. Furthermore, this enhances the mobility of the sampler. For parameters which represent coordinates on the surface of a sphere, the algorithm transforms the parameters into a Cartesian coordinate system before sampling which again makes sure no samples are automatically rejected, and provides a physically intuitive way of the sampling the parameter space.
68 - Johannes Buchner 2017
The data torrent unleashed by current and upcoming astronomical surveys demands scalable analysis methods. Many machine learning approaches scale well, but separating the instrument measurement from the physical effects of interest, dealing with variable errors, and deriving parameter uncertainties is often an after-thought. Classic forward-folding analyses with Markov Chain Monte Carlo or Nested Sampling enable parameter estimation and model comparison, even for complex and slow-to-evaluate physical models. However, these approaches require independent runs for each data set, implying an unfeasible number of model evaluations in the Big Data regime. Here I present a new algorithm, collaborative nested sampling, for deriving parameter probability distributions for each observation. Importantly, the number of physical model evaluations scales sub-linearly with the number of data sets, and no assumptions about homogeneous errors, Gaussianity, the form of the model or heterogeneity/completeness of the observations need to be made. Collaborative nested sampling has immediate application in speeding up analyses of large surveys, integral-field-unit observations, and Monte Carlo simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا