Do you want to publish a course? Click here

Leveraging Expert Consistency to Improve Algorithmic Decision Support

244   0   0.0 ( 0 )
 Added by Maria De-Arteaga
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Due to their promise of superior predictive power relative to human assessment, machine learning models are increasingly being used to support high-stakes decisions. However, the nature of the labels available for training these models often hampers the usefulness of predictive models for decision support. In this paper, we explore the use of historical expert decisions as a rich--yet imperfect--source of information, and we show that it can be leveraged to mitigate some of the limitations of learning from observed labels alone. We consider the problem of estimating expert consistency indirectly when each case in the data is assessed by a single expert, and propose influence functions based methodology as a solution to this problem. We then incorporate the estimated expert consistency into the predictive model meant for decision support through an approach we term label amalgamation. This allows the machine learning models to learn from experts in instances where there is expert consistency, and learn from the observed labels elsewhere. We show how the proposed approach can help mitigate common challenges of learning from observed labels alone, reducing the gap between the construct that the algorithm optimizes for and the construct of interest to experts. After providing intuition and theoretical results, we present empirical results in the context of child maltreatment hotline screenings. Here, we find that (1) there are high-risk cases whose risk is considered by the experts but not wholly captured in the target labels used to train a deployed model, and (2) the proposed approach improves recall for these cases.



rate research

Read More

Ranking algorithms are being widely employed in various online hiring platforms including LinkedIn, TaskRabbit, and Fiverr. Prior research has demonstrated that ranking algorithms employed by these platforms are prone to a variety of undesirable biases, leading to the proposal of fair ranking algorithms (e.g., Det-Greedy) which increase exposure of underrepresented candidates. However, there is little to no work that explores whether fair ranking algorithms actually improve real world outcomes (e.g., hiring decisions) for underrepresented groups. Furthermore, there is no clear understanding as to how other factors (e.g., job context, inherent biases of the employers) may impact the efficacy of fair ranking in practice. In this work, we analyze various sources of gender biases in online hiring platforms, including the job context and inherent biases of employers and establish how these factors interact with ranking algorithms to affect hiring decisions. To the best of our knowledge, this work makes the first attempt at studying the interplay between the aforementioned factors in the context of online hiring. We carry out a largescale user study simulating online hiring scenarios with data from TaskRabbit, a popular online freelancing site. Our results demonstrate that while fair ranking algorithms generally improve the selection rates of underrepresented minorities, their effectiveness relies heavily on the job contexts and candidate profiles.
94 - Renzhe Xu , Peng Cui , Kun Kuang 2020
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.
In this work we present a multi-armed bandit framework for online expert selection in Markov decision processes and demonstrate its use in high-dimensional settings. Our method takes a set of candidate expert policies and switches between them to rapidly identify the best performing expert using a variant of the classical upper confidence bound algorithm, thus ensuring low regret in the overall performance of the system. This is useful in applications where several expert policies may be available, and one needs to be selected at run-time for the underlying environment.
240 - Fadi Badra 2008
The Semantic Web is becoming more and more a reality, as the required technologies have reached an appropriate level of maturity. However, at this stage, it is important to provide tools facilitating the use and deployment of these technologies by end-users. In this paper, we describe EdHibou, an automatically generated, ontology-based graphical user interface that integrates in a semantic portal. The particularity of EdHibou is that it makes use of OWL reasoning capabilities to provide intelligent features, such as decision support, upon the underlying ontology. We present an application of EdHibou to medical decision support based on a formalization of clinical guidelines in OWL and show how it can be customized thanks to an ontology of graphical components.
In this short paper, we present early insights from a Decision Support System for Customer Support Agents (CSAs) serving customers of a leading accounting software. The system is under development and is designed to provide suggestions to CSAs to make them more productive. A unique aspect of the solution is the use of bandit algorithms to create a tractable human-in-the-loop system that can learn from CSAs in an online fashion. In addition to discussing the ML aspects, we also bring out important insights we gleaned from early feedback from CSAs. These insights motivate our future work and also might be of wider interest to ML practitioners.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا