No Arabic abstract
This paper studies a general class of stochastic population processes in which agents interact with one another over a network. Agents update their behaviors in a random and decentralized manner based only on their current state and the states of their neighbors. It is well known that when the number of agents is large and the network is a complete graph (has all-to-all information access), the macroscopic behavior of the population converges to a differential equation called a {it mean-field approximation}. When the network is not complete, it is unclear in general whether there exists a suitable mean-field approximation for the macroscopic behavior of the population. This paper provides general conditions on the network and policy dynamics for which a suitable mean-field approximation exists. First, we show that as long as the network is well-connected, the macroscopic behavior of the population concentrates around the {it same} mean-field system as the complete-graph case. Next, we show that as long as the network is sufficiently dense, the macroscopic behavior of the population concentrates around a mean-field system that is, in general, {it different} from the mean-field system obtained in the complete-graph case. Finally, we provide conditions under which the mean-field approximation is equivalent to the one obtained in the complete-graph case.
We approach the development of models and control strategies of susceptible-infected-susceptible (SIS) epidemic processes from the perspective of marked temporal point processes and stochastic optimal control of stochastic differential equations (SDEs) with jumps. In contrast to previous work, this novel perspective is particularly well-suited to make use of fine-grained data about disease outbreaks and lets us overcome the shortcomings of current control strategies. Our control strategy resorts to treatment intensities to determine who to treat and when to do so to minimize the amount of infected individuals over time. Preliminary experiments with synthetic data show that our control strategy consistently outperforms several alternatives. Looking into the future, we believe our methodology provides a promising step towards the development of practical data-driven control strategies of epidemic processes.
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
We study a family of McKean-Vlasov (mean-field) type ergodic optimal control problems with linear control, and quadratic dependence on control of the cost function. For this class of problems we establish existence and uniqueness of an optimal control. We propose an $N$-particles Markovian optimal control problem approximating the McKean-Vlasov one and we prove the convergence in relative entropy, total variation and Wasserstein distance of the law of the former to the law of the latter when $N$ goes to infinity. Some McKean-Vlasov optimal control problems with singular cost function and the relation of these problems with the mathematical theory of Bose-Einstein condensation is also established.
Mathematical mean-field approaches play an important role in different fields of Physics and Chemistry, but have found in recent works also their application in Economics, Finance and Game Theory. The objective of our paper is to investigate a special mean-field problem in a purely stochastic approach: for the solution $(Y,Z)$ of a mean-field backward stochastic differential equation driven by a forward stochastic differential of McKean--Vlasov type with solution $X$ we study a special approximation by the solution $(X^N,Y^N,Z^N)$ of some decoupled forward--backward equation which coefficients are governed by $N$ independent copies of $(X^N,Y^N,Z^N)$. We show that the convergence speed of this approximation is of order $1/sqrt{N}$. Moreover, our special choice of the approximation allows to characterize the limit behavior of $sqrt{N}(X^N-X,Y^N-Y,Z^N-Z)$. We prove that this triplet converges in law to the solution of some forward--backward stochastic differential equation of mean-field type, which is not only governed by a Brownian motion but also by an independent Gaussian field.
Adaptive networks rely on in-network and collaborative processing among distributed agents to deliver enhanced performance in estimation and inference tasks. Information is exchanged among the nodes, usually over noisy links. The combination weights that are used by the nodes to fuse information from their neighbors play a critical role in influencing the adaptation and tracking abilities of the network. This paper first investigates the mean-square performance of general adaptive diffusion algorithms in the presence of various sources of imperfect information exchanges, quantization errors, and model non-stationarities. Among other results, the analysis reveals that link noise over the regression data modifies the dynamics of the network evolution in a distinct way, and leads to biased estimates in steady-state. The analysis also reveals how the network mean-square performance is dependent on the combination weights. We use these observations to show how the combination weights can be optimized and adapted. Simulation results illustrate the theoretical findings and match well with theory.