Maxwells Equations in Complex Variables


Abstract in English

This paper provides a view of Maxwells equations from the perspective of complex variables. The study is made through complex differential forms and the Hodge star operator in $mathbb{C}^2$ with respect to the Euclidean and the Minkowski metrics. It shows that holomorphic functions give rise to nontrivial solutions, and the inner product between the electric and the magnetic fields is considered in this case. Further, it obtains a simple necessary and sufficient condition regarding harmonic solutions to the equations. In the end, the paper gives an interpretation of the Lorenz gauge condition in terms of the codifferential operator.

Download