Do you want to publish a course? Click here

Decoupled Exploration and Exploitation Policies for Sample-Efficient Reinforcement Learning

85   0   0.0 ( 0 )
 Added by William Whitney
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite the close connection between exploration and sample efficiency, most state of the art reinforcement learning algorithms include no considerations for exploration beyond maximizing the entropy of the policy. In this work we address this seeming missed opportunity. We observe that the most common formulation of directed exploration in deep RL, known as bonus-based exploration (BBE), suffers from bias and slow coverage in the few-sample regime. This causes BBE to be actively detrimental to policy learning in many control tasks. We show that by decoupling the task policy from the exploration policy, directed exploration can be highly effective for sample-efficient continuous control. Our method, Decoupled Exploration and Exploitation Policies (DEEP), can be combined with any off-policy RL algorithm without modification. When used in conjunction with soft actor-critic, DEEP incurs no performance penalty in densely-rewarding environments. On sparse environments, DEEP gives a several-fold improvement in data efficiency due to better exploration.



rate research

Read More

94 - Yao Yao , Li Xiao , Zhicheng An 2021
Model-based deep reinforcement learning has achieved success in various domains that require high sample efficiencies, such as Go and robotics. However, there are some remaining issues, such as planning efficient explorations to learn more accurate dynamic models, evaluating the uncertainty of the learned models, and more rational utilization of models. To mitigate these issues, we present MEEE, a model-ensemble method that consists of optimistic exploration and weighted exploitation. During exploration, unlike prior methods directly selecting the optimal action that maximizes the expected accumulative return, our agent first generates a set of action candidates and then seeks out the optimal action that takes both expected return and future observation novelty into account. During exploitation, different discounted weights are assigned to imagined transition tuples according to their model uncertainty respectively, which will prevent model predictive error propagation in agent training. Experiments on several challenging continuous control benchmark tasks demonstrated that our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
The goal of meta-reinforcement learning (meta-RL) is to build agents that can quickly learn new tasks by leveraging prior experience on related tasks. Learning a new task often requires both exploring to gather task-relevant information and exploiting this information to solve the task. In principle, optimal exploration and exploitation can be learned end-to-end by simply maximizing task performance. However, such meta-RL approaches struggle with local optima due to a chicken-and-egg problem: learning to explore requires good exploitation to gauge the explorations utility, but learning to exploit requires information gathered via exploration. Optimizing separate objectives for exploration and exploitation can avoid this problem, but prior meta-RL exploration objectives yield suboptimal policies that gather information irrelevant to the task. We alleviate both concerns by constructing an exploitation objective that automatically identifies task-relevant information and an exploration objective to recover only this information. This avoids local optima in end-to-end training, without sacrificing optimal exploration. Empirically, DREAM substantially outperforms existing approaches on complex meta-RL problems, such as sparse-reward 3D visual navigation. Videos of DREAM: https://ezliu.github.io/dream/
Sparse-reward domains are challenging for reinforcement learning algorithms since significant exploration is needed before encountering reward for the first time. Hierarchical reinforcement learning can facilitate exploration by reducing the number of decisions necessary before obtaining a reward. In this paper, we present a novel hierarchical reinforcement learning framework based on the compression of an invariant state space that is common to a range of tasks. The algorithm introduces subtasks which consist of moving between the state partitions induced by the compression. Results indicate that the algorithm can successfully solve complex sparse-reward domains, and transfer knowledge to solve new, previously unseen tasks more quickly.
A fundamental issue in reinforcement learning algorithms is the balance between exploration of the environment and exploitation of information already obtained by the agent. Especially, exploration has played a critical role for both efficiency and efficacy of the learning process. However, Existing works for exploration involve task-agnostic design, that is performing well in one environment, but be ill-suited to another. To the purpose of learning an effective and efficient exploration policy in an automated manner. We formalized a feasible metric for measuring the utility of exploration based on counterfactual ideology. Based on that, We proposed an end-to-end algorithm to learn exploration policy by meta-learning. We demonstrate that our method achieves good results compared to previous works in the high-dimensional control tasks in MuJoCo simulator.
Many cooperative multiagent reinforcement learning environments provide agents with a sparse team-based reward, as well as a dense agent-specific reward that incentivizes learning basic skills. Training policies solely on the team-based reward is often difficult due to its sparsity. Furthermore, relying solely on the agent-specific reward is sub-optimal because it usually does not capture the team coordination objective. A common approach is to use reward shaping to construct a proxy reward by combining the individual rewards. However, this requires manual tuning for each environment. We introduce Multiagent Evolutionary Reinforcement Learning (MERL), a split-level training platform that handles the two objectives separately through two optimization processes. An evolutionary algorithm maximizes the sparse team-based objective through neuroevolution on a population of teams. Concurrently, a gradient-based optimizer trains policies to only maximize the dense agent-specific rewards. The gradient-based policies are periodically added to the evolutionary population as a way of information transfer between the two optimization processes. This enables the evolutionary algorithm to use skills learned via the agent-specific rewards toward optimizing the global objective. Results demonstrate that MERL significantly outperforms state-of-the-art methods, such as MADDPG, on a number of difficult coordination benchmarks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا