No Arabic abstract
We experimentally generate cylindrically polarized wavepackets with transverse orbital angular momentum, demonstrating the coexistence of spatiotemporal optical vortex with spatial polarization singularity. The results in this paper extend the study of spatiotemporal wavepackets to a broader scope, paving the way for its applications in various areas such as light-matter interaction, optical tweezers, spatiotemporal spin-orbit angular momentum coupling, etc.
Cylindrical vector (CV) beams are a set of transverse spatial modes that exhibit a cylindrically symmetric intensity profile and a variable polarization about the beam axis. They are composed of a non-separable superposition of orbital and spin angular momentum. Critically, CV beams are also the eigenmodes of optical fiber and, as such, are of wide-spread practical importance in photonics and have the potential to increase communications bandwidth through spatial multiplexing. Here, we derive the coupled amplitude equations that describe the four-wave mixing (FWM) of CV beams in optical fibers. These equations allow us to determine the selection rules that govern the interconversion of CV modes in FWM processes. With these selection rules, we show that FWM conserves the total angular momentum, the sum of orbital and spin angular momentum, in the conversion of two input photons to two output photons. When applied to spontaneous four-wave mixing, the selection rules show that photon pairs can be generated in CV modes directly and can be entangled in those modes. Such quantum states of light in CV modes could benefit technologies such as quantum key distribution with satellites.
We report the experimental demonstration of the induced polarization-dependent optical vortex beams. We use the Talbot configuration as a method to probe this effect. In particular, our simple experiment shows the direct measurement of this observation. Our experiment can exhibit clearly the combination between the polarization and orbital angular momentum (OAM) states of light. This implementation might be useful for further studies in the quantum system or quantum information.
Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polarization and an orbital angular momentum (OAM) owing to the azimuthally dependent phase. Even though such angular momenta are longitudinal in general, a SAM transverse to the propagation has opened up a variety of key applications [1]. In contrast, investigations of the transverse OAM are quite rare due to its complex nature. Here we demonstrate a simple method to generate a three dimensional (3D) optical wave packet with a controllable purely transverse OAM. Such a wave packet is a spatiotemporal (ST) vortex, which resembles an advancing cyclone, with optical energy flowing in the spatial and temporal dimension. Contrary to the transverse SAM, the magnitude of the transverse OAM carried by the photonic cyclone is scalable to a larger value by simple adjustments. Since the ST vortex carries a controllable OAM in the unique transverse dimension, it has a strong potential for novel applications that may not be possible otherwise. The scheme reported here can be readily adapted for the other spectra regime and different wave fields, opening tremendous opportunities for the study and applications of ST vortex in much broader scopes.
Cylindrical vector beam (CVB) is a structured lightwave characterized by its topologically nontrivial nature of the optical polarization. The unique electromagnetic field configuration of CVBs has been exploited to optical tweezers, laser accelerations, and so on. However, use of CVBs in research fields outside optics such as condensed matter physics has not progressed. In this paper, we propose potential applications of CVBs to those fields based on a general argument on their absorption by matter. We show that pulse azimuthal CVBs around terahertz (THz) or far-infrared frequencies can be a unique and powerful mean for time-resolved spectroscopy of magnetic properties of matter and claim that an azimuthal electric field of a pulse CVB would be a novel way of studying and controlling edge currents in topological materials. We also demonstrate how powerful CVBs will be as a tool for Floquet engineering of nonequilibrium states of matter.
We demonstrate experimentally that a broad area laser-like optical oscillator (a nondegenerate photorefractive oscillator) with structured injected signal displays two-phase patterns. The technique (G. J. de Valcarcel and K. Staliunas, Phys. Rev. Lett. (105), 054101 (2010)) consists in spatially modulating the injection, so that its phase alternates periodically between two opposite values, i.e. differing by pi