Do you want to publish a course? Click here

Exact and Heuristic Methods with Warm-start for Embedded Mixed-Integer Quadratic Programming Based on Accelerated Dual Gradient Projection

154   0   0.0 ( 0 )
 Added by Vihangkumar Naik
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Small-scale Mixed-Integer Quadratic Programming (MIQP) problems often arise in embedded control and estimation applications. Driven by the need for algorithmic simplicity to target computing platforms with limited memory and computing resources, this paper proposes a few approaches to solving MIQPs, either to optimality or suboptimally. We specialize an existing Accelerated Dual Gradient Projection (GPAD) algorithm to effectively solve the Quadratic Programming (QP) relaxation that arise during Branch and Bound (B&B) and propose a generic framework to warm-start the binary variables which reduces the number of QP relaxations. Moreover, in order to find an integer feasible combination of the binary variables upfront, two heuristic approaches are presented: ($i$) without using B&B, and ($ii$) using B&B with a significantly reduced number of QP relaxations. Both heuristic approaches return an integer feasible solution that may be suboptimal but involve a much reduced computation effort. Such a feasible solution can be either implemented directly or used to set an initial upper bound on the optimal cost in B&B. Through different hybrid control and estimation examples involving binary decision variables, we show that the performance of the proposed methods, although very simple to code, is comparable to that of state-of-the-art MIQP solvers.



rate research

Read More

We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming (SDP) approximation that can be solved efficiently. We prove that the popular approximate S-lemma method --- which is valid only in the case of continuous uncertainty --- is weaker than our approximation. We also show that all results can be extended to the two-stage robust quadratic optimization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP reformulations and demonstrate their superiority over the state-of-the-art solution schemes on instances of least squares, project management, and multi-item newsvendor problems.
106 - Ranjeet Kumar 2020
We propose a dual dynamic integer programming (DDIP) framework for solving multi-scale mixed-integer model predictive control (MPC) problems. Such problems arise in applications that involve long horizons and/or fine temporal discretizations as well as mixed-integer states and controls (e.g., scheduling logic and discrete actuators). The approach uses a nested cutting-plane scheme that performs forward and backward sweeps along the time horizon to adaptively approximate cost-to-go functions. The DDIP scheme proposed can handle general MPC formulations with mixed-integer controls and states and can perform forward-backward sweeps over block time partitions. We demonstrate the performance of the proposed scheme by solving mixed-integer MPC problems that arise in the scheduling of central heating, ventilation, and air-conditioning (HVAC) plants. We show that the proposed scheme is scalable and dramatically outperforms state-of-the-art mixed-integer solvers.
While the techniques in optimal control theory are often model-based, the policy optimization (PO) approach can directly optimize the performance metric of interest without explicit dynamical models, and is an essential approach for reinforcement learning problems. However, it usually leads to a non-convex optimization problem in most cases, where there is little theoretical understanding on its performance. In this paper, we focus on the risk-constrained Linear Quadratic Regulator (LQR) problem with noisy input via the PO approach, which results in a challenging non-convex problem. To this end, we first build on our earlier result that the optimal policy has an affine structure to show that the associated Lagrangian function is locally gradient dominated with respect to the policy, based on which we establish strong duality. Then, we design policy gradient primal-dual methods with global convergence guarantees to find an optimal policy-multiplier pair in both model-based and sample-based settings. Finally, we use samples of system trajectories in simulations to validate our policy gradient primal-dual methods.
The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 6.6x over the original framework and 2.8 times as many instances solved within a time limit of two hours.
We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles, the proposed methods are optimal in terms of the number of communication steps. However, for all classes of the objective, the optimality in terms of the number of oracle calls per node takes place only up to a logarithmic factor and the notion of smoothness. By using mini-batching technique, we show that the proposed methods with stochastic oracle can be additionally parallelized at each node. The considered algorithms can be applied to many data science problems and inverse problems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا