Do you want to publish a course? Click here

SunCET: A compact EUV instrument to fill a critical observational gap

50   0   0.0 ( 0 )
 Added by James Mason
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Sun Coronal Ejection Tracker (SunCET) is an extreme ultraviolet imager and spectrograph instrument concept for tracking coronal mass ejections through the region where they experience the majority of their acceleration: the difficult-to-observe middle corona. It contains a wide field of view (0-4~Rs) imager and a 1~AA spectral-resolution-irradiance spectrograph spanning 170-340~AA. It leverages new detector technology to read out different areas of the detector with different integration times, resulting in what we call simultaneous high dynamic range, as opposed to the traditional high dynamic range camera technique of subsequent full-frame images that are then combined in post-processing. This allows us to image the bright solar disk with short integration time, the middle corona with a long integration time, and the spectra with their own, independent integration time. Thus, SunCET does not require the use of an opaque or filtered occulter. SunCET is also compact -- $sim$15 $times$ 15 $times$ 10~cm in volume -- making it an ideal instrument for a CubeSat or a small, complementary addition to a larger mission. Indeed, SunCET is presently in a NASA-funded, competitive Phase A as a CubeSat and has also been proposed to NASA as an instrument onboard a 184 kg Mission of Opportunity.



rate research

Read More

Determining the preferred spatial location of the energy input to solar coronal loops would be an important step forward towards a more complete understanding of the coronal heating problem. Following on from Sarkar & Walsh (2008) this paper presents a short 10e9 cm global loop as 125 individual strands, where each strand is modelled independently by a one-dimensional hydrodynamic simulation. The strands undergo small-scale episodic heating and are coupled together through the frequency distribution of the total energy input to the loop which follows a power law distribution with index ~ 2.29. The spatial preference of the swarm of heating events from apex to footpoint is investigated. From a theoretical perspective, the resulting emission measure weighted temperature profiles along these two extreme cases does demonstrate a possible observable difference. Subsequently, the simulated output is folded through the TRACE instrument response functions and a re-derivation of the temperature using different filter-ratio techniques is performed. Given the multi-thermal scenario created by this many strand loop model, a broad differential emission measure results; the subsequent double and triple filter ratios are very similar to those obtained from observations. However, any potential observational signature to differentiate between apex and footpoint dominant heating is possibly below instrumental thresholds. The consequences of using a broadband instrument like TRACE and Hinode-XRT in this way are discussed.
A new algorithm for automatic detection of prominences on the solar limb in 304 A EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as starting point to reconstruct the whole prominence by morphological image processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community.
Parameter estimation with non-Gaussian stochastic fields is a common challenge in astrophysics and cosmology. In this paper, we advocate performing this task using the scattering transform, a statistical tool sharing ideas with convolutional neural networks (CNNs) but requiring no training nor tuning. It generates a compact set of coefficients, which can be used as robust summary statistics for non-Gaussian information. It is especially suited for fields presenting localized structures and hierarchical clustering, such as the cosmological density field. To demonstrate its power, we apply this estimator to a cosmological parameter inference problem in the context of weak lensing. On simulated convergence maps with realistic noise, the scattering transform outperforms classic estimators and is on a par with state-of-the-art CNN. It retains the advantages of traditional statistical descriptors, has provable stability properties, allows to check for systematics, and importantly, the scattering coefficients are interpretable. It is a powerful and attractive estimator for observational cosmology and the study of physical fields in general.
58 - B. Lavraud 2019
The Active Monitor Box of Electrostatic Risks (AMBER) is a double-head thermal electron and ion electrostatic analyzer (energy range 0-30 keV) that was launched onboard the Jason-3 spacecraft in 2016. The next generation AMBER instrument, for which a first prototype was developed and then calibrated at the end of 2017, constitutes a significant evolution that is based on a single head to measure both species alternatively. The instrument developments focused on several new subsystems (front-end electronics, high-voltage electronics, mechanical design) that permit to reduce instrument resources down to ~ 1 kg and 1.5 W. AMBER is designed as a generic radiation monitor with a twofold purpose: (1) measure magnetospheric thermal ion and electron populations in the range 0-35 keV, with significant scientific potential (e.g., plasmasphere, ring current, plasma sheet), and (2) monitor spacecraft electrostatic charging and the plasma populations responsible for it, for electromagnetic cleanliness and operational purposes.
Radial velocity (RV) searches for exoplanets have surveyed many of the nearest and brightest stars for long-term velocity variations indicative of a companion body. Such surveys often detect high-amplitude velocity signatures of objects that lie outside the planetary mass regime, most commonly those of a low-mass star. Such stellar companions are frequently discarded as false-alarms to the main science goals of the survey, but high-resolution imaging techniques can be employed to either directly detect or place significant constraints on the nature of the companion object. Here, we present the discovery of a compact companion to the nearby star HD~118475. Our Anglo-Australian Telescope (AAT) RV data allow the extraction of the full Keplerian orbit of the companion, found to have a minimum mass of 0.445~$M_odot$. Follow-up speckle imaging observations at the predicted time of maximum angular separation rule out a main sequence star as the source of the RV signature at the 3.3$sigma$ significance level, implying that the companion must be a low-luminosity compact object, most likely a white dwarf. We provide an isochrone analysis combined with our data that constrain the possible inclinations of the binary orbit. We discuss the eccentric orbit of the companion in the context of tidal circularization timescales and show that non-circular orbit was likely inherited from the progenitor. Finally, we emphasize the need for utilizing such an observation method to further understand the demographics of white dwarf companions around nearby stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا