Do you want to publish a course? Click here

Will Artificial Intelligence supersede Earth System and Climate Models?

74   0   0.0 ( 0 )
 Added by Christopher Irrgang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We outline a perspective of an entirely new research branch in Earth and climate sciences, where deep neural networks and Earth system models are dismantled as individual methodological approaches and reassembled as learning, self-validating, and interpretable Earth system model-network hybrids. Following this path, we coin the term Neural Earth System Modelling (NESYM) and highlight the necessity of a transdisciplinary discussion platform, bringing together Earth and climate scientists, big data analysts, and AI experts. We examine the concurrent potential and pitfalls of Neural Earth System Modelling and discuss the open question whether artificial intelligence will not only infuse Earth system modelling, but ultimately render them obsolete.



rate research

Read More

Climate change has become one of the biggest global problems increasingly compromising the Earths habitability. Recent developments such as the extraordinary heat waves in California & Canada, and the devastating floods in Germany point to the role of climate change in the ever-increasing frequency of extreme weather. Numerical modelling of the weather and climate have seen tremendous improvements in the last five decades, yet stringent limitations remain to be overcome. Spatially and temporally localized forecasting is the need of the hour for effective adaptation measures towards minimizing the loss of life and property. Artificial Intelligence-based methods are demonstrating promising results in improving predictions, but are still limited by the availability of requisite hardware and software required to process the vast deluge of data at a scale of the planet Earth. Quantum computing is an emerging paradigm that has found potential applicability in several fields. In this opinion piece, we argue that new developments in Artificial Intelligence algorithms designed for quantum computers - also known as Quantum Artificial Intelligence (QAI) - may provide the key breakthroughs necessary to furthering the science of climate change. The resultant improvements in weather and climate forecasts are expected to cascade to numerous societal benefits.
The ability to use symbols is the pinnacle of human intelligence, but has yet to be fully replicated in machines. Here we argue that the path towards symbolically fluent artificial intelligence (AI) begins with a reinterpretation of what symbols are, how they come to exist, and how a system behaves when it uses them. We begin by offering an interpretation of symbols as entities whose meaning is established by convention. But crucially, something is a symbol only for those who demonstrably and actively participate in this convention. We then outline how this interpretation thematically unifies the behavioural traits humans exhibit when they use symbols. This motivates our proposal that the field place a greater emphasis on symbolic behaviour rather than particular computational mechanisms inspired by more restrictive interpretations of symbols. Finally, we suggest that AI research explore social and cultural engagement as a tool to develop the cognitive machinery necessary for symbolic behaviour to emerge. This approach will allow for AI to interpret something as symbolic on its own rather than simply manipulate things that are only symbols to human onlookers, and thus will ultimately lead to AI with more human-like symbolic fluency.
Artificial Intelligence is one of the fastest growing technologies of the 21st century and accompanies us in our daily lives when interacting with technical applications. However, reliance on such technical systems is crucial for their widespread applicability and acceptance. The societal tools to express reliance are usually formalized by lawful regulations, i.e., standards, norms, accreditations, and certificates. Therefore, the TUV AUSTRIA Group in cooperation with the Institute for Machine Learning at the Johannes Kepler University Linz, proposes a certification process and an audit catalog for Machine Learning applications. We are convinced that our approach can serve as the foundation for the certification of applications that use Machine Learning and Deep Learning, the techniques that drive the current revolution in Artificial Intelligence. While certain high-risk areas, such as fully autonomous robots in workspaces shared with humans, are still some time away from certification, we aim to cover low-risk applications with our certification procedure. Our holistic approach attempts to analyze Machine Learning applications from multiple perspectives to evaluate and verify the aspects of secure software development, functional requirements, data quality, data protection, and ethics. Inspired by existing work, we introduce four criticality levels to map the criticality of a Machine Learning application regarding the impact of its decisions on people, environment, and organizations. Currently, the audit catalog can be applied to low-risk applications within the scope of supervised learning as commonly encountered in industry. Guided by field experience, scientific developments, and market demands, the audit catalog will be extended and modified accordingly.
Regular monitoring of nutrient intake in hospitalised patients plays a critical role in reducing the risk of disease-related malnutrition. Although several methods to estimate nutrient intake have been developed, there is still a clear demand for a more reliable and fully automated technique, as this could improve data accuracy and reduce both the burden on participants and health costs. In this paper, we propose a novel system based on artificial intelligence (AI) to accurately estimate nutrient intake, by simply processing RGB Depth (RGB-D) image pairs captured before and after meal consumption. The system includes a novel multi-task contextual network for food segmentation, a few-shot learning-based classifier built by limited training samples for food recognition, and an algorithm for 3D surface construction. This allows sequential food segmentation, recognition, and estimation of the consumed food volume, permitting fully automatic estimation of the nutrient intake for each meal. For the development and evaluation of the system, a dedicated new database containing images and nutrient recipes of 322 meals is assembled, coupled to data annotation using innovative strategies. Experimental results demonstrate that the estimated nutrient intake is highly correlated (> 0.91) to the ground truth and shows very small mean relative errors (< 20%), outperforming existing techniques proposed for nutrient intake assessment.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artificial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا